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Top 4 Advantages to Normal Distribution

Modeling the properties of asset returns requires the choice of an appropriate probability 
distribution. This distribution must have properties that match up with actual historical 
experience with asset returns. One of the most popular choices for this type of modeling is 
the normal distribution.

The normal distribution offers several advantages in this case:

	 ✓	 It’s a continuous distribution, defined for an infinite number of values. This is important 
since the number of different returns that can occur is also infinite. 

	 ✓	 It’s symmetrical about the mean; there is a balance between the probability of returns 
that are below the mean and returns that are above the mean.

	 ✓	 The probability of extreme outcomes (outcomes well above or below the mean) is quite 
low; for financial returns, these occur quite infrequently.

	 ✓	 It’s additive; the sum of normal random variables is also normal. This means that if the 
returns to a single asset are normal, the returns to a portfolio of assets are also 
normal.
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In this part…
	 ✓	 Review the foundations of probability theory; this is the founda-

tion of all statistical analysis.
	 ✓	 Use random variables and probability distributions to determine 

if a random event will take place. 
	 ✓	 Use binomial distribution to compute probabilities for pro-

cesses where only one of two possible outcomes may occur. 
This could be something as simple as flipping a coin several 
times to see if the coin turns up heads or tails on each flip, or 
as complicated as a stock price increase.

	 ✓	 Describe the rates of return to financial assets, the distribution 
of corporate profits, and the prices of key commodities (such 
as oil) using normal distribution.

	 ✓	 Understand two key areas of statistics: sampling and sampling 
distributions. Most statistical analysis is based on samples ran-
domly drawn from a population.



Chapter 6

Probability Theory: Measuring  
the Likelihood of Events

In This Chapter
▶	Understanding sets and how they’re related to each other
▶	Determining the possible outcomes
▶	Applying types of probabilities
▶	Using rules of probability

P 
robability theory is a branch of mathematics that focuses on the analysis 
of random events and is the foundation of all statistical analysis. You 

can use probability theory to model a large number of situations that arise in 
practice. For example, you can use probability theory to estimate how likely 
it is that a new product will succeed in the marketplace, identify appropriate 
prices for an insurance company to charge its customers, and more.

This chapter reviews the mathematical foundations of probability theory, 
such as sets and events, defines types of probabilities, and introduces the 
rules of probability.

Working with Sets
Probability theory is based on the notion of a set — a collection of objects, 
such as numbers, letters, colors, names, and so on, individually called elements. 
You use mathematical operations, such as membership, subset, union,  
intersection, and complement, used to create new sets from existing ones 
according to specific rules. For example, you use the operation union to  
combine two different sets into one new set that contains all the elements 
from both sets. I explore each of these operations in the following sections.



94 Part II: Probability Theory and Probability Distributions 

Membership
Membership indicates whether an element belongs to a set. For example,  
suppose that set A contains the elements 1 through 6 (the numbers on a die), 
which is shown mathematically as A = {1, 2, 3, 4, 5, 6}.

As you can see, the elements or members in a set are listed only once, are 
separated by commas, and are enclosed within braces: { }.

In this example, the element 3 belongs to set A. To indicate that an element is 
part of a set, you use the symbol [: 3 [ A.

On the other hand, to indicate that an element is not part of a set, you use 
the symbol . So in this case, the element 7 doesn’t belong to set A, or 7  A, 
because it’s not listed in the definition (between the braces) of set A.

Subset
A subset is a set that’s completely contained within a larger set. For example, 
suppose that sets A and B are defined as follows:

A = {1, 2, 3, 4, 5, 6}

B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Set A represents the numbers on a die; set B represents the numbers from 1 
to 10. In this example, set A is a subset of set B because every element of set A 
is also an element of set B. The symbol , represents that one set is a subset 
of another, as in A , B.

A Venn diagram is used to illustrate the relationship between sets. Sets are 
represented as circles so that it’s easy to see how they’re related to each 
other. If sets overlap, the area common to both sets is shaded.

The Venn diagram in Figure 6-1 shows the relationship between sets A and 
B. The diagram shows that set A is completely contained within set B — that 
is, A is a subset of B. A is completely shaded because the area of overlap 
between A and B is A itself.

As another example, suppose that set C contains the elements 1, 2, 3, 4, 5, and 
6 (the numbers on a die), whereas set D contains the elements 1, 2, 3 and 7:

D = {1, 2, 3, 7}

C = {1, 2, 3, 4, 5, 6}

Set D is not a subset of set C because the element 7 belongs to set D but not 
to set C; in mathematical terms, D # C.
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Figure 6-1:  
Venn 

diagram 
showing 

that set A is 
a subset of 

set B.
	

	 Illustration by Wiley, Composition Services Graphics

Union
Two sets can be combined with a mathematical operation known as union. 
The union of two sets A and B is a set that contains the following:

	 ✓	All the elements in set A

	 ✓	All the elements in set B

This definition also includes the elements that belong to both sets. As an 
example, suppose that set A contains all the students at a university who are 
majoring in mathematics; set B contains all the students who are majoring in 
finance. The union of sets A and B contains all students who are majoring in 
math and all students who are majoring in finance and all students who are 
majoring in both (for example, double majors).

As another example, suppose that sets A and B are defined as follows:

A = {2, 4, 6}

B = {1, 2, 3, 4}

The union of these sets is all the numbers on the face of a die except 5:

The symbol  represents union.

The union shows all elements that appear in set A, set B, or both. Note that 
even though elements 2 and 4 appear in both sets A and B, they’re not listed 
twice in the union; a set contains only unique values.

The Venn diagram in Figure 6-2 shows the relationship between sets A and B. 
The shaded region in the diagram represents the union.
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Figure 6-2: 
Union of two 

sets.
	

	 Illustration by Wiley, Composition Services Graphics

Note: The order in which you write the sets is irrelevant; for example, B  A 
= A  B.

Intersection
The intersection of two sets A and B is a set containing the elements that are 
in both sets. For example, suppose that sets A and B are defined as follows:

A = {1, 3, 5, 7}

B = {3, 6, 7}

The intersection of these sets is .

The intersection of A and B contains the elements 3 and 7 because these ele-
ments belong to both A and B. The symbol  represents intersection.

The Venn diagram in Figure 6-3 shows the relationship between A and B. The 
shaded region in the diagram represents the intersection of these sets.

	

Figure 6-3: 
Intersection 
of two sets.

	
	 Illustration by Wiley, Composition Services Graphics
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As another example, suppose that set C contains the elements 2, 4, 6:

A = {1, 3, 5, 7}

C = {2, 4, 6}

The intersection of these sets is .

The intersection of sets A and C contains no elements because the sets don’t 
have any of the same elements. The set containing no elements, or { }, is 
known as an empty set. Two sets that have no elements in common are said 
to be mutually exclusive.

The Venn diagram in Figure 6-4 shows the relationship between sets A and C. 
This diagram has no shaded region because the intersection of sets A and C 
contains no elements.

	

Figure 6-4: 
An inter-

section 
containing 

no elements 
between 
two sets.

	
	 Illustration by Wiley, Composition Services Graphics

Complement
The mathematical operation complement is based on the notion of a universal 
set or sample space — all the elements a set may contain. For example,  
suppose that you roll a single die; the number that turns up may be any 
whole number between 1 and 6. Assume that set A contains the odd numbers 
that may turn up when you roll a die, and set B contains the even numbers:

A = {1, 3, 5}

B = {2, 4, 6}

In this case, the sample space contains all possible numbers that may turn up 
when you roll the die:

S = {1, 2, 3, 4, 5, 6}
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The complement of set A is the set of all numbers that are elements of the 
sample space but not elements of A:

AC = {2, 4, 6}

AC is the set “A complement.” It contains the elements 2, 4, and 6 because 
they don’t belong to set A, and they do belong to the sample space.

Note that elements such as 7, 8, 9, and so on aren’t elements of AC because 
they’re not elements of set A, but they’re also not elements of the sample 
space.

The complement of A is shown in the Venn diagram in Figure 6-5. The shaded 
region shows all the elements in the sample space that don’t belong to set A.

	

Figure 6-5: 
Set A and 

its comple-
ment AC.

	
	 Illustration by Wiley, Composition Services Graphics

Similarly, the complement of B is BC = {1, 3, 5}.

Betting on Uncertain Outcomes
Probability theory is based on the premise that a process generates uncertain 
(random) outcomes. This process is sometimes known as a random experiment, 
such as the following examples:

	 ✓	A roulette wheel is spun. The outcome can be a 0, a 00 (“double zero”), 
or any number between 1 and 36.

	 ✓	A lottery drawing results in a single winning number being chosen.

	 ✓	A futures contract trades throughout the day, resulting in a settlement 
price at the close of trading.
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In each case, the outcome isn’t known in advance. Using probability, you can 
determine the likelihood of a specific outcome, such as the likelihood of get-
ting an even number from a single spin of a roulette wheel.

In this section, I introduce several key terms, along with an introduction to 
computing probabilities.

The sample space: Everything  
that can happen
A sample space is another name for the universal set (described in the earlier 
section “Complement”); it contains all the outcomes that can result from a 
random experiment. For example, suppose you flip a coin two times. The  
possible outcomes of this random experiment are:

	 ✓	Heads followed by heads (HH)

	 ✓	Heads followed by tails (HT)

	 ✓	Tails followed by heads (TH)

	 ✓	Tails followed by tails (TT)

The sample space for this random experiment is S = {HH, HT, TH, TT}. It 
includes all the possible outcomes.

Event: One possible outcome
An event is one possible outcome of a random experiment. More formally, it 
is a subset of the sample space. For example, in the coin-flipping, the event  
E = “2 tails turn up.” Event E is a set containing the element TT, or in  
mathematical terms, E = {TT}.

Event E is a subset of the sample space because it’s completely contained 
within the sample space. As another example, the event F = “at least 1 head 
turns up.” Event F is a set containing the elements HH, HT, TH, or F = {HH, 
HT, TH}.

In some cases, events may be related to each other. Two key ways in which 
events may be related to each other are known as mutually exclusive and 
independent.

These are described in the following section. 
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Mutually exclusive events
Two events are said to be mutually exclusive if they can’t both happen at the 
same time. Here are two events that are mutually exclusive:

A = The roll of a die is odd.

B = The roll of a die is even.

Clearly, the roll of a die must result in a number that is either odd or even; it 
can’t be both. Therefore, events A and B are mutually exclusive.

As another example, based on the coin-flipping experiment, suppose that two 
events are defined:

G = Two heads turn up.

H = Two tails turn up.

It’s impossible for both two heads to turn up and two tails to turn up. This 
means that G and H are mutually exclusive. This result can be demonstrated 
using sets as follows:

G = {HH} and H = {TT}. These events have no elements in common; their 
intersection is the empty set .

The probability of the empty set is zero; therefore, the event that both G and 
H occur is impossible. This means that G and H are mutually exclusive.

Independent events
Two events A and B are said to be independent if the outcome of event A 
doesn’t affect the outcome of event B and vice versa. For example, suppose 
that based on the coin-flipping experiment, event A is defined as the event 
that the first flip is a head, and event B is defined as the event that the 
second flip is a head. In other words:

A = {HH, HT}

B = {HH, TH}

Because the outcome of the first flip has no influence over the outcome of the 
second flip, events A and B are independent events. (See a more formal test of 
independence in the next section.)

Note that A and B are not mutually exclusive; both A and B can occur.
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Computing probabilities of events
If a sample space contains elements that are all equally likely to occur, 
then computing the probabilities of events is straightforward. For example, 
for the coin-flipping experiment in the earlier sections “The sample space: 
Everything that can happen” and “Event: One possible outcome,” these prob-
abilities exist:

	 ✓	P(HH) = 0.25

	 ✓	P(HT) = 0.25

	 ✓	P(TH) = 0.25

	 ✓	P(TT) = 0.25

For example, the probability of getting two consecutive heads is 1⁄4 (which 
equals 0.25.) This is because HH is one of four possible outcomes when a 
coin is flipped twice. Furthermore, each outcome is equally likely to occur 
(because heads and tails are equally likely). Therefore, each outcome has a 
probability of 1⁄4 = 0.25.

One possible outcome ÷ 4 possibilities = 0.25.

As an example, suppose that the event K is defined as “at least one tail turns 
up.” Then event K contains the elements HT, TH and TT, or K = {HT, TH, TT}.

You find the probability of event K with this formula:

Because event K contains three elements and the total number of elements in 
the sample space is four, P(K) = 3/4 = 0.75.

Based on this formula, the probability of the empty set is 0, and the probability  
of the entire sample space is 1. For example, suppose that event A is an 
impossible event. It is represented by a set containing no elements (the 
empty set). The sample space contains the elements 1, 2, and 3. The probability 
of A is, therefore,

The probability of S is:
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Looking at Types of Probabilities
The three basic types of probabilities are:

	 ✓	Unconditional (marginal) probabilities: When events are independent

	 ✓	Joint probabilities: When two things happen at once

	 ✓	Conditional probabilities: When one event depends on another

In this section, you find out about each of these types of probabilities, and 
you also discover how you can use conditional probabilities to determine 
whether two events are independent.

Unconditional (marginal) probabilities: 
When events are independent
The unconditional (marginal) probability of an event is found as a row total 
or a column total in a joint probability table. As an example, Table 6-1 is a 
joint probability table, representing the distribution of students in a business 
school according to major and whether they’re working on a bachelor’s 
degree or a master’s degree. In this section, I show you how to use data like 
this to find unconditional probabilities.

Table 6-1	 Joint Probability Table Showing the  
	 Distribution of Business Students

Majoring in 
Finance

Majoring in 
Accounting

Majoring in 
Marketing

Total

Bachelor’s 
degree

0.26 0.36 0.18 0.80

Master’s 
degree

0.09 0.07 0.04 0.20

Total 0.35 0.43 0.22 1.00

Based on Table 6-1, the following events are defined:

	 ✓	B = pursuing a bachelor’s degree

	 ✓	M = pursuing a master’s degree

	 ✓	F = majoring in finance
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	 ✓	A = majoring in accounting

	 ✓	T = majoring in marketing

You can find the unconditional probabilities of the following events directly 
from Table 6-1:

	 ✓	P(B) = the probability of pursuing a bachelor’s degree

	 ✓	P(M) = the probability of pursuing a master’s degree

	 ✓	P(F) = the probability of majoring in finance

	 ✓	P(A) = the probability of majoring in accounting

	 ✓	P(T) = the probability of majoring in marketing

Say you want to find the probability that a randomly chosen business student 
is pursuing a bachelor’s degree. In other words, you want to calculate P(B).

Referring to Table 6-1, you look at the first row (which refers to students  
pursuing their bachelor’s degrees). The row total is 0.80. This is the  
probability that a randomly chosen student is pursuing a bachelor’s degree.

Suppose you want to know the probability that a randomly chosen student is 
majoring in finance. In other words, you want to calculate P(F).

Referring to Table 6-1, you look at the first column (which refers to students 
majoring in finance). The column total is 0.35. This is the probability that a 
randomly chosen student is majoring in finance.

You can find the remaining unconditional probabilities in the same way. 
These are:

P(M) = 0.20

P(A) = 0.43

P(T) = 0.22

Joint probabilities: When  
two things happen at once
The probability that two different events occur at the same time is known as 
a joint probability. For example, the probability that a student is working on a 
bachelor’s degree and is majoring in finance is a joint probability.

As you study Table 6-1, you can see that the intersection of two different 
events can determine joint probabilities. For example, to find the probability 
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that a randomly chosen business student is pursuing a bachelor’s degree and 
is majoring in finance, take the intersection of events B and F. This equals  
P(B  F) =0.26.

You find the remaining joint probabilities in the same way:

P(B  A) = 0.36

P(B  T) = 0.18

P(M  F) = 0.09

P(M  A) = 0.07

P(M  T) = 0.04

Conditional probabilities: When  
one event depends on another
The conditional probability of an event is defined as the probability of an 
event given that another event has occurred. For example, the probability 
that a student is working on a bachelor’s degree given that he or she is major-
ing in accounting is a conditional probability. This is written as follows:

The symbol “|” is used to indicate a conditional probability. (You pronounce 
this expression as “the probability of B given A.”)

To find the conditional probability of an event, you set up the ratio of a joint 
probability to an unconditional (marginal) probability (see previous sections 
on these types of probabilities). For example, say you want to find out what the 
probability is that a student who’s known to be pursuing a bachelor’s degree is 
majoring in marketing. Referring to Table 6-1, you first calculate the joint prob-
ability of pursuing a bachelor’s degree and majoring in marketing, as follows:

P(B  T) = 0.18

Then you find that the unconditional probability of pursuing a bachelor’s 
degree equals P(B) = 0.80. Therefore,

As another example, to find the probability that an accounting major is  
pursuing a master’s degree you take the joint probability of these two events:

P(M  A) = 0.07
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The unconditional probability of majoring in accounting equals P(A) = 0.43. 
Therefore, 

Determining independence of events
You can use conditional probabilities to determine whether two events are 
independent. Two events are independent if the probability of one event 
occurring doesn’t influence the probability of the other occurring, and vice 
versa.

To prove independence, the following two conditions must be met:

P(A|B) = P(A)

P(B|B) = P(B)

Using the business students example from the earlier section “Joint  
probabilities: When two things happen at once” and referring to Table 6-1, 
you can determine whether the events “majoring in accounting” (A) and  
“pursuing a bachelor’s degree” (B) are independent events.

The first step is to compute the conditional probabilities P(A|B) and 
P(B|A):The joint probability of events A and B is P(A  B) = 0.36.

The unconditional probabilities of events A and B are

P(A) = 0.43

P(B) = 0.80

Therefore,

because P(A|B) must equal P(A) and P(B|A) must equal P(B) for the two 
events to be independent. The results show that P(A|B) = 0.45, P(A) = 0.43, 
P(B|A) = 0.84, and P(B) = 0.80, so both conditions fail. Events A and B are not 
independent of each other; in other words, they’re dependent on each other. 
Therefore, the decision to pursue a bachelor’s or a master’s degree appears 
to influence the choice of major.
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Following the Rules: Computing 
Probabilities

In addition to computing joint, conditional, and unconditional probabilities 
(discussed in the previous sections), the following three rules can help you 
determine other probabilities:

	 ✓	The addition rule shows the probability of the union of two events.

	 ✓	The complement rule determines the probability of the complement of 
an event.

	 ✓	The multiplication rule identifies the probability of the intersection of 
events.

I discuss these three rules and how to use them in the following sections.

Addition rule
You use the addition rule to compute the probability of the union of two 
events. Mathematically speaking, for events A and B, the addition rule states 
that .

This shows that the probability of the union of events A and B equals  
the sum of the probability of A and the probability of B, from which the  
probability of both events is subtracted. Subtracting the probability of both 
events is necessary to avoid to problem of double-counting. This is shown in 
the following example:

Suppose that event A contains the elements 1, 2, 3 and event B contains the 
elements 3, 4, 5. The sample space contains the elements 1, 2, 3, 4, 5.

The corresponding probabilities are:
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The union of A and B contains all the elements in the sample space:

As a result, the probability of A union B equals 1. (Recall that the sample 
space always has a probability of 1.) If you simply combine the probabilities 
of A and B, though, you will get a surprising result; they sum to 6/5, which is 
greater than one.

This result occurs because the element 3 appears in both A and B:

The probability of 3 was counted twice, one in set A and once in set B, which 
accounts for the sum of the probabilities being greater than one. By subtracting 
the probability of the element 3, the correct probability of one is found. 

Table 6-2 shows the distribution of coffees (measured in pounds) the Big 
Bean Corporation produces during a given day.

Table 6-2	 Joint Probability Distribution for Coffee Styles
Special Reserve 
Blend (S)

Kona Hawaii 
Blend (K)

Aromatic 
Blend (A)

Total

Decaffeinated (D) 0.12 0.80 0.22 0.42
Regular (R) 0.24 0.12 0.22 0.58
Total 0.36 0.20 0.44 1.00

If you choose a pound of coffee randomly from the daily output of the Big 
Bean Corporation, what’s the probability that it’s either the Special Reserve 
Blend (S) or the Regular (R) (or both)?

In this example, you use the addition rule because you’re being asked to 
compute the probability of a union. You combine the probability of S with 
the probability of R, subtracting the intersection between them to avoid the 
problem of double-counting.
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From Table 6-2, you can determine that P(S) = 0.36; that P(R) = 0.58;  
P(S  R) = 0.24. Therefore,

Seventy percent of the coffee produced by Big Bean is either the special 
reserve blend, regular, or both.

When two events A and B are mutually exclusive (that is, they can’t both occur 
at the same time), the addition rule simplifies to  
because .

For example, if you choose a pound of coffee randomly from the daily output 
of the Big Bean Corporation, what’s the probability that it’s either the Kona 
Hawaii Blend (K) or the Aromatic Blend (A)?

Because a pound of coffee can’t be both the Kona Hawaii Blend and the 
Aromatic Blend, events K and A are mutually exclusive. This means that you 
can use the simplified version of the addition rule:

Complement rule
The complement rule is expressed as follows:

P(AC) = 1 – P(A)

AC is the complement of event A.

Two events are said to be complements if they are mutually exclusive and 
their union equals the entire sample space. Here’s an example: Suppose 
that an experiment consists of choosing a single card from a standard deck. 
Event A = “the card is red.” Event B = “the card is black.” Events A and B are 
complements because A and B are mutually exclusive (no card can be both 
red and black). The union of A and B is the sample space (the entire deck, 
because all cards must be either red or black, so the union of A and B equals 
the entire sample space.)

In the Big Bean example from the previous section, the complement of event 
D (decaffeinated coffee) is event R (regular coffee) because all coffee must be 
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either decaffeinated or regular, and no coffee can be both. You can find the 
probability of the complement of D as follows:

P(DC) = 1 – P(D)

Referring to Table 6-2, you can see that P(D) = 0.42. Therefore, P(DC) =  
1 – P(D) = 1 – 0.42 = 0.58, which is equal to P(R).

Multiplication rule
To figure out the probability of the intersection of two events, you use the 
multiplication rule. This is used to determine the probability that two events 
are both true. For example, suppose an experiment consists of choosing a 
card from a standard deck. Event A = “the card is red.” Event B = “the card is 
a king.” The multiplication rule could be used to determine the probability 
that the card is both red and a king (for example, a red king.)

The multiplication rule can be written in two equivalent ways:

Note that these formulas are simply algebraic rearrangements of the  
definition of conditional probability:

Suppose the Omega Corporation has been the subject of takeover rumors 
for several months. The takeover is far more likely to occur if the economy 
rebounds next year. Omega’s chief economist estimates that the likelihood 
of strong growth next year is 5 percent, the likelihood of weak growth is 35 
percent, and the likelihood of negative growth is 60 percent. The likelihood 
of a takeover during a period of strong growth is estimated to be 40 percent; 
during a period of weak growth, this falls to 20 percent; and during a period 
of negative growth, it’s assumed to be only 5 percent. What is the probability 
that there is strong growth next year and Omega is taken over?
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The following events are defined:

	 ✓	S = “strong growth”

	 ✓	W = “weak growth”

	 ✓	N = “negative growth”

	 ✓	T = “Omega is taken over”

The probability of the events S and T can be determined as follows:

Because there’s a 5 percent chance of strong growth next year, P(S) = 0.05. 
The likelihood of a takeover during a period of strong growth is estimated to 
be 40 percent. Therefore, P(T|S) = 0.40. So the probability that there’s strong 
growth next year and that Omega is taken over is 

When two events A and B are independent, the multiplication rule simplifies to

This is because P(A|B) = P(A) and P(B|A) = P(B).



Chapter 7

Probability Distributions and 
Random Variables

In This Chapter
▶	Understanding the concept of the random variable
▶	Describing the behavior of a random variable with a probability distribution
▶	Summarizing the properties of a random variable with moments

T 
his chapter introduces two new concepts that are used to determine the 
probability that a random event takes place — random variables and 

probability distributions.

These concepts are closely related to the notion of the random experiment 
(defined in Chapter 6). A random experiment is a process in which events 
unfold in an unpredictable way. A random variable is used to assign numerical 
values to all the possible outcomes of a random experiment. A probability 
distribution assigns probabilities to these numerical values.

In this chapter, I also define summary measures of a probability distribution, 
known as moments, such as expected value and variance. Random variables 
and probability distributions are used by economists, financial analysts, 
researchers, and others to model the behavior of economic and financial  
variables, such as interest rates, inflation rates, corporate earnings, and so on.

Defining the Role of the  
Random Variable

A random variable is based on a random experiment, a process that generates 
outcomes that aren’t known in advance (see Chapter 6). For example, suppose 
that a game of chance consists of spinning a wheel with four colors — red, 
blue, green, and yellow — each color results in a prize ranging from $1.00 to 
$10.00. A random variable may be used to assign a prize value to each color. 
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For example, you could define X to represent the prize that is received for 
each color, as follows:

red X = $1
blue X = $2
green X = $5
yellow X = $10

In this example, the random experiment consists of spinning the wheel. For 
each possible outcome (color), X assigns a numerical value that represents 
the prize received.

It may seem like a paradox, but a random variable is neither random nor a 
variable! In fact, a random variable is a function. It assigns a single numerical 
value to each outcome of a random experiment. Random variables may  
represent a large number of different financial and economic variables, 
including the following:

	 ✓	A corporation’s profits during the upcoming quarter

	 ✓	The number of new customers resulting from a new advertising campaign

	 ✓	The value of the Dow Jones Industrial Average at the end of next year

As another example, suppose you conduct a simple random experiment by 
flipping a coin three times. The set of all possible outcomes, known as the 
sample space, consists of the following elements. (H represents a head  
turning up on a single flip of the coin, and T represents a tail turning up.)

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

S represents the sample space. Each element in the sample space is a single 
sequence of three flips; for example, HTH refers to a head followed by a tail 
followed by another head.

Because a head and a tail are equally likely to occur on each flip, each outcome 
of this random experiment is also equally likely to occur. For example, HHT is 
just as likely to happen as THT. With eight equally likely outcomes, each has 
a probability of 1/8 or 0.125.

An event is one outcome or a combination of outcomes of a random experiment. 
For example, suppose that you want to calculate the probability of the event 
E, where two or more heads turn up. This outcome can occur in four ways:

	 ✓	Three consecutive heads (HHH)

	 ✓	Two heads followed by one tail (HHT)

	 ✓	A head followed by a tail followed by another head (HTH)

	 ✓	A tail followed by two heads (THH)
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You can express these possible outcomes more compactly with set notation:

E = {HHH, HHT, HTH, THH}

To compute the probability of the event E, you count the number of elements 
that correspond to event E and divide by the number of elements in the 
entire sample space (S):

P(E) is the probability of event E.

This approach can be extremely cumbersome if the sample space contains a 
large number of elements. As an alternative, you can define a random  
variable to represent the number of heads that turn up during the random 
experiment. You can then determine the probability of event E from the  
probabilities of the different possible values of the random variable.

For example, let the random variable X equal the number of heads that turn 
up when a coin is flipped three times. X has a numerical value for each  
outcome of this experiment. Here are the outcomes of the experiment and 
the corresponding values of X.

Outcome X
HHH 3
HHT 2
HTH 2
THH 2
HTT 1
THT 1
TTH 1
TTT 0

For example, HHT represents two heads followed by a tail; therefore, the 
value of X for HHT is 2. Similarly, for the outcome TTH, the value of X is 1.

Suppose that a marketing firm conducts a survey of customers to determine 
whether they’re satisfied with the customer service received from the local 
cable company. Each customer answers yes or no. The survey yielded the  
following replies:

yes no no yes
no yes yes yes
yes yes yes yes
yes yes no yes
no no no no
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For the results, X is defined as follows:

X = 0: the customer reply is no

X = 1: the customer reply is yes

The results are shown in Table 7-1.

Table 7-1	 Survey Responses
Number of Responses X (0 = no, 1 = yes)
8 0
12 1

By organizing the results this way, you can easily see the proportion of the 
customers who are satisfied with their cable service.

Assigning Probabilities  
to a Random Variable

Although random variables may provide useful information, their greatest 
advantage is that they simplify the calculation of probabilities. For example, 
in the case of the coin-flipping experiment in the previous section, computing 
probabilities directly from the values of a random variable is simpler than 
counting up all the ways in which an event can occur.

You can assign probabilities to each possible value of a random variable  
by using a probability distribution — a table or formula that shows these  
probabilities. A probability distribution has two important properties:

	 ✓	The probability of each value of a random variable is between 0 and 1.

	 ✓	The sum of the probabilities equals 1.

In the following sections, I show you how to construct a probability  
distribution. I also show you how to illustrate the properties of a  
probability distribution with a special type of graph known as a histogram.

Calculating the probability distribution
Based on the coin flip example in the earlier section, “Defining the Role of the 
Random Variable,” the range of possible values for X (the number of heads 
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that turn up) is 0 to 3. Here is the number of ways in which each  
possible value of X may occur:

X Outcomes
0 TTT
1 HTT, THT, TTH
2 HHT, HTH, THH
3 HHH

Because eight equally likely outcomes of this experiment can occur, the  
probability for each value of X equals the number of outcomes divided by the 
size of the sample space. Table 7-2 shows this probability distribution.

Table 7-2	 Probability Distribution for the  
	 Coin-Flipping Experiment
X P(X)
0 1/8 = 0.125
1 3/8 = 0.375
2 3/8 = 0.375
3 1/8 = 0.125

The probability distribution in Table 7-2 shows that

	 ✓	The probability of getting no heads (X = 0) is 0.125.

	 ✓	The probability of getting one head (X = 1) is 0.375.

	 ✓	The probability of getting two heads (X = 2) is 0.375.

	 ✓	The probability of getting three heads (X = 3) is 0.125.

Now, suppose that you want to calculate the probability of the event F, where 
two or more tails turn up. This outcome can occur in four ways:

	 ✓	Three consecutive tails (TTT)

	 ✓	Two tails followed by a head (TTH)

	 ✓	A tail followed by a head followed by another tail (THT)

	 ✓	A head followed by two tails (HTT)

The event F corresponds to a set containing four elements:

F = {TTT, TTH, THT, HTT}
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For two or more tails to turn up, the experiment must result in either zero 
heads or one head. Therefore, you can calculate the probability of F as follows:

P(F) = P(X = 0) + P(X = 1) = 0.125 + 0.375 = 0.500

Visualizing probability distribution  
with a histogram
You can express the probability distribution for the coin-flipping experiment 
graphically with a histogram. A histogram is a graph in which you place  
individual values or ranges of values on the horizontal axis and the frequency 
of occurrence for each value or range of values on the vertical axis.

The histogram for the probability distribution of the coin-flipping experiment 
is shown in Figure 7-1. The vertical axis shows the probability of X, and the 
horizontal axis shows the value of X (that is, the number of heads.)
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	 Illustration by Wiley, Composition Services Graphics

The histogram shows that the two most likely outcomes of this experiment 
are one head or two heads (X = 1 or X = 2); these are equally likely to occur. 
The least likely outcomes are no heads or three heads (X = 0 or X = 3); these 
are also equally likely to occur.
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Characterizing a Probability  
Distribution with Moments

Recall from Chapters 3 through 5 that the properties of samples and populations 
may be summarized in a convenient form with a series of numerical measures, 
including the mean, variance, standard deviation, and so on.

The properties of a probability distribution can also be summarized with a 
set of numerical measures known as moments.

In this section, I cover the most important of these moments: expected value 
(mean) and the variance. (The standard deviation isn’t a separate moment; 
it’s the square root of the variance.) First, though, I explain the role of the 
summation operator in calculating these moments.

Understanding the summation operator (Σ)
The summation operator is used to indicate that a set of values should be 
added together. (The summation operator was introduced in Chapter 3.) The 
formulas used to compute moments for a probability distribution are based on 
the summation operator. This is because each calculation must be repeated for 
each possible value of a random variable and the results must be summed.

As an example of the summation operator, suppose a data set contains five 
elements. The summation operator tells you to perform the following  
calculations:

Xi represents a single element in a data set; i is an index, and n is the number 
of elements to be summed.

Expected value
The expected value of a random variable X represents the average value of 
X that occurs if the random experiment is repeated a large number of times. 
You can think of the expected value as the center of the distribution.

	 The expected value is a weighted average of its possible values, with weights 
equal to probabilities. The formula for computing expected value of X is
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Here are the key terms in this formula:

	 ✓	E(X) = the expected value of X

	 ✓	n = the number of possible values of X

	 ✓	i = an index

	 ✓	Xi = one possible value of X

	 ✓	P(Xi) = the probability of Xi

	 ✓	Σ = the summation operator used to indicate that a sum is being computed

Suppose that a biopharmaceutical firm is planning to release several new 
drugs during the coming year, depending on whether or not the patents are 
approved. You can use the random variable X to represent the number of 
new drugs that will be released.

Table 7-3 shows the probability distribution of these results.

Table 7-3	 Probability Distribution for Release of New Drugs
X P(X)
0 0.10
1 0.25
2 0.50
3 0.15

You can then use the probability distribution to determine the expected 
(average) value of X by setting up the possible values of X and the corre-
sponding probabilities, like so:

X1 = 0	P(X1) = 0.10

X2 = 1	P(X2) = 0.25

X3 = 2	P(X3) = 0.50

X4 = 3	P(X4) = 0.15

The corresponding histogram is shown in Figure 7-2.
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Next, you substitute these numbers into the expected value formula:

This result shows that the expected (average) number of new drugs that  
will be released during the coming year is 1.7. Although it’s physically  
impossible to release 1.7 new drugs (since 1.7 is not an integer or whole 
number), if this experiment is repeated many times, the average number of 
new drugs released will be 1.7.

Variance and standard deviation
The variance of a random variable X is the average squared distance between 
the values of X and the expected value of X. In other words, variance is the 
amount of “spread” among the different values of X. The standard deviation 
is simply the square root of the variance. Note that the variance and standard 
deviation of a random variable are equivalent to the variance and standard 
deviation of a sample or population (discussed in Chapter 4).

The formula for computing the variance of X is
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	 σ2 represents the variance of X.

This expression tells you to perform the following calculations:

	 ✓	For each possible value of X (Xi), subtract the expected value of X.

	 ✓	Square the result.

	 ✓	Multiply this expression by the probability of Xi.

	 ✓	Compute the sum of these products.

For the example of the biopharmaceutical company (in the earlier section, 
“Understanding the summation operator [Σ]”) you compute the variance like so:

 

One of the major drawbacks to the variance is that it’s measured in squared 
units, which makes interpretation difficult. In this example, the variance 
of the number of new drugs that will be released next year is 0.7100 drugs 
squared. It’s hard to visualize what “drugs squared” actually means. As a 
result, the standard deviation is normally used in place of variance as a  
measure of spread. By taking the square root of 0.7100 drugs squared, you 
get a result of 0.8426 drugs, which is much more intuitively clear.

For the example of the biopharmaceutical company, the standard deviation 
of the number of new drugs released next year equals .

The standard deviation is 0.8426 new drugs. You can think of the standard devia-
tion as a measure of how much uncertainty is associated with the expected value.

	 σ represents the standard deviation of X.



Chapter 8

The Binomial, Geometric, and 
Poisson Distributions

In This Chapter
▶	Finding probabilities when only two things can happen with the binomial distribution
▶	Seeing how many “successes” or” failures” occur first with the geometric distribution
▶	Using the Poisson distribution to calculate the probability of events occurring during a 

given time frame

Y 
ou can model many complex business problems by using probability 
distributions. These distributions help provide answers to questions 

such as, “What’s the likelihood that oil prices will rise during the coming 
year?” “What’s the probability of a stock market crash next month?” “How 
likely is it that a corporation’s earnings will fall below expectations this 
year?” “What is the likelihood that three oil wells will have to be drilled 
before oil is found?”

A probability distribution defines the statistical properties of a variable. 
Accurate modeling of financial variables requires that you pick the  
appropriate distribution for a given situation. Some of the more widely 
used probability distributions in business are the binomial, geometric, and 
Poisson distributions. These are examples of discrete distributions, in which 
only a countable number of values are possible.

This chapter covers the key properties of the binomial, geometric, and 
Poisson distributions and explains the circumstances under which you  
may apply them. For each distribution, I give you formulas for computing 
probabilities and also provide tables as alternatives to doing the computing 
yourself. 

This chapter also introduces summary measures of probability distributions, 
known as moments, which are closely related to the mean, variance, and  
standard deviation of samples and populations (described in Chapter 3). 
Then I wrap up the chapter by covering simplified formulas for computing 
the moments of the binomial, geometric, and Poisson distributions.
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Looking at Two Possibilities with  
the Binomial Distribution

You use the binomial distribution to compute probabilities for processes 
where only one of two possible outcomes may occur. (The fact that only two 
possible outcomes can occur is what gives the distribution its name.) Here 
are some examples of processes you can model with the binomial distribution:

	 ✓	When you flip a coin several times, the outcome of interest is whether 
the coin turns up heads or tails on each flip.

	 ✓	When you roll a die multiple times, the outcome of interest is whether the 
number that turns up on each roll is odd (1, 3, or 5) or even (2, 4, or 6).

	 ✓	When you look at the closing price of a stock each day for one year, the 
outcome of interest is whether the stock price increased or not.

As another example, suppose you hold a portfolio of stocks. During the 
coming year, it’s possible that some of these stocks may split. (A stock split 
results in additional shares being distributed to existing shareholders.) For 
each stock, only two possible outcomes may occur: The stock splits, or it 
doesn’t split. As a result, you can use the binomial distribution to compute 
the probability of a given number of splits in your portfolio over the coming 
year.

	 The binomial distribution is based on several specialized assumptions, which I 
explain in detail in the next section. If these assumptions aren’t true, using the 
binomial distribution to compute probabilities for a given situation is likely to 
give inaccurate results.

Checking out the binomial distribution
You generate a binomial distribution by a special type of random experiment, 
known as a binomial process. This consists of a fixed number of repeated 
trials, each with only two possible outcomes and the following distinguishing 
features:

	 ✓	Each trial results in either a success or a failure. On each trial of a  
binomial process, two possible outcomes may take place — and they’re 
designated as “success” and “failure.” For example, if you’re doing a 
series of coin flips, you may call the outcome of the coin landing with 
“heads” up a success and the outcome of “tails” up a failure.

	 ✓	The trials are independent of each other. Each trial of a binomial  
process is independent of previous trials; in other words, the outcome 
of one trial has no influence over the outcome of the other trials. For 
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example, the probability of heads turning up on a coin flip doesn’t 
depend on the outcomes of flips that have taken place in the past.

	 ✓	The probability of success remains constant for all trials. The probability 
of success in a binomial process doesn’t change from one trial to the 
next; instead, it remains constant throughout the entire process. For 
example, the probability of a head turning up on a flip of a coin is always 
one-half (50 percent), no matter how many times the coin is flipped.

Computing binomial probabilities
You can compute the probability that a specified number of successes will 
occur during a fixed number of trials by using the binomial formula. For 
example, with this formula, you can determine the probability that five odd 
numbers turn up when a die is rolled ten times. The formula is:

Here’s what each element of this formula means:

	 ✓	X = a binomial random variable whose value is determined by the 
number of successes that occur during a series of trials

	 ✓	x = the number of successes whose probability you are computing

	 ✓	n = the number of trials that take place

	 ✓	p = the probability of success on a single trial

	 ✓	(1 – p) = the probability of failure on a single trial

	 ✓	! = the factorial operator

	 The capital X is a binomial random variable (discussed in Chapter 7), and the 
lowercase x is a specific value, which refers to the number of successes whose 
probability you’re calculating.

Factorial: counting how many ways you can arrange things
The exclamation point (!) doesn’t just mean you’re excited. The symbol is also 
the mathematical operator factorial. You pronounce n! as “n factorial,” which is 
the product of all positive integers less than or equal to n. For example:

0! = 1 (looks odd, but it’s true)

1! = 1

2! = (2)(1) = 2

3! = (3)(2)(1) = 6

4! = (4)(3)(2)(1) = 24
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A general description is n! = (n)(n – 1)(n – 2) . . . (2)(1). The factorial is a 
handy tool, but you can apply it only to 0 and positive integers.

You can use the factorial operator to count the number of ways you can 
arrange a group of objects. For example, suppose that a small bookshelf has 
enough room for three titles: Algebra and Its Applications; Baseball: A History; 
and Chemistry in Everyday Life. You can label these titles A, B, and C and then 
set up the possibilities for how many ways you can you arrange these books 
on the shelf like this:

ABC

ACB

BAC

BCA

CAB

CBA

This list covers every possibility. Each entry in the list is an arrangement of 
the three titles. Counting the number of elements in this list shows that you 
can arrange the books in six ways.

Fortunately, a much easier way to get this same result is to simply compute  
3! (because three books are being arranged), giving a total number of 
arrangements of 3! = (3)(2)(1) = 6.

	 Many calculators contain a built-in function for the factorial operator. It  
typically appears as x! In Microsoft Excel, you can compute factorial with the 
function FACT.

Combinations: Counting how many choices you have
You use the combinations formula to count the number of combinations that 
can be created when choosing x objects from a set of n objects:

One distinguishing feature of a combination is that the order of objects is 
irrelevant.

For example, you can use this formula to count the number of ways you 
choose two elective classes from a set of eight for the upcoming semester. 
The order in which you choose the electives is immaterial; each possible 
selection is a combination of two objects.
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As another example, suppose that you’re painting your house with two colors 
from a set of four: green, blue, white, and yellow. Because the order in which 
you choose the colors is irrelevant, each pair of colors is a combination. How 
many different color schemes are possible with the given set of choices? You 
can answer this question by simply listing all the possible combinations:

green, white

green, blue

green, yellow

white, yellow

white, blue

blue, yellow

This list shows that you have six possible choices of pairs of colors.

The quicker way to answer this question is to substitute these values into  
the combinations formula; in this case, x represents the number of colors  
to choose (2), and n represents the total number of colors you can choose 
from (4).

	 The formula for computing the number of combinations is sometimes 
expressed as

Read or say this expression as “n choose x.” This function appears on many 
calculators as nCr. In Microsoft Excel, you can compute combinations with 
the function COMBIN.

	 When you’re selecting x objects from a group of n objects in such a way that 
the order of selection does matter, the choices are known as permutations 
instead of combinations.

Binomial formula: Computing the probabilities
Combinations are useful for computing binomial probabilities. You can find 
the probability of x successes during n trials with the binomial formula:
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Here,

is the total number of ways you can get exactly x successes during n trials, and

is the probability of a sequence consisting of x successes and (n – x) failures.

For example, say 40 percent of all published books are fiction, so the  
remaining 60 percent are nonfiction. If you pick six books at random from a 
bookstore, what’s the probability that either none or one of them is fiction?

First, define fiction as a success. The probability of success on a single trial is 
p = 0.4, because 40 percent of all books are fiction. Each book you choose is a 
single trial of an experiment, so if you pick six books, you’re conducting  
n = 6 trials for this experiment. You then figure the probability of getting one 
or fewer fiction books by calculating the probabilities of getting none and one 
fiction book and then adding them together:

	 ✓	Based on the binomial formula, the probability of choosing no fiction 
books from a selection of six books is

		

	 ✓	Based on the binomial formula, the probability of choosing one fiction 
book from a selection of six is

		

Now add the probabilities together. The probability of getting either no  
fiction book or one is 0.0467 + 0.1866 = 0.2333. Alternatively, you can get 
these results from a binomial table for six trials (n = 6), such as Table 8-1.
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Table 8-1	 Binomial Probabilities that Result from 6 Trials (n = 6)
p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

x = 0 0.5314 0.2621 0.1176 0.0467 0.0156
x = 1 0.3543 0.3932 0.3025 0.1866 0.0938
x = 2 0.0984 0.2458 0.3241 0.3110 0.2344
x = 3 0.0146 0.0819 0.1852 0.2765 0.3125
x = 4 0.0012 0.0154 0.0595 0.1382 0.2344
x = 5 0.0001 0.0015 0.0102 0.0369 0.0938
x = 6 0.0000 0.0001 0.0007 0.0041 0.0156

Table 8-1 shows the probability of success (p) at the top of each column. In 
this example, because p = 0.4, the probability of choosing zero fiction books 
is P(X = 0) = 0.0467 (found in the x = 0 row and the p = 0.4 column). The  
probability of choosing one fiction book is P(X = 1) = 0.1866 (found in the  
x = 1 row and the p = 0.4 column). The probability of getting no fiction books 
or one fiction book is the sum of 0.0467 + 0.1866, or 0.2333.

	 Check out a binomial table with 19 values for n at www.statisticshowto.
com/tables/binomial-distribution-table.

	 If you simply don’t like using formulas or tables to compute binomial  
probabilities, or if you want to triple-check your numbers, you can also use 
a specialized calculator, such as the Texas Instruments TI-83 or TI-84, which 
contains built-in functions that compute these probabilities quickly and easily. 
Or you can use the function BINOMDIST in Microsoft Excel 2007 and older  
versions, or BINOM.DIST in Excel 2010. If you need help with Excel, visit 
http://office.microsoft.com/en-us/excel-help.

Moments of the binomial distribution
Moments are summary measures of a probability distribution. The expected 
value represents the mean or average value of a distribution. The expected 
value is sometimes known as the first moment of a probability distribution. 
You calculate the expected value by taking each possible value of the  
distribution, weighting it by its probability, and then summing the results. 
The expected value is comparable to the mean of a population or sample (see 
Chapter 3).

http://www.statisticshowto.com/tables/binomial-distribution-table
http://www.statisticshowto.com/tables/binomial-distribution-table
http://office.microsoft.com/en-us/excel-help/
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The variance and standard deviation represent the dispersion among the 
possible values of a probability distribution. The variance and standard  
deviation of a probability distribution are equivalent to the variance and 
standard deviation of a population or sample. (The general formulas for  
computing moments for a discrete probability distribution are given in 
Chapter 7.) The variance is sometimes known as the second central moment 
of a probability distribution; the standard deviation isn’t a separate moment, 
but simply the square root of the variance.

Luckily, for the binomial distribution, you can reduce computation time by 
using a series of simplified formulas, which I discuss in the following sections.

Binomial distribution: Calculating the expected value
The expected value of a probability distribution is its average value. You get it 
by weighting each possible value by its probability of occurring. For the  
binomial distribution, the calculation of the expected value can be simplified to

E(X) = np

For example, suppose that 10 percent of all people are left-handed, and  
90 percent are right-handed (which happens to be true). In a class of  
40 students, what’s the expected number of left-handed students? You can 
calculate the expected value by thinking of each student as a “trial,” with a  
10 percent chance of being left-handed (a “success”) and 90 percent chance 
of being right-handed (a “failure”). Therefore, n = 40 and p = 0.10. The expected 
number of left-handed students in the class is E(X) = np = (40)(0.10) = 4.

Binomial distribution: Computing variance and standard deviation
The variance of a distribution is the average squared distance between each 
possible outcome and the expected value. For the binomial distribution, you 
may compute the variance with the following simplified formula:

σ2 = np(1 – p)

The standard deviation of a distribution equals the square root of the  
variance. For the binomial distribution, you calculate the standard deviation as

For the example of left-handed students in the previous section,

	 ✓	The expected value is E(X) = np = (40)(0.10) = 4.

	 ✓	The variance is σ2 = np(1 – p) = 40(0.10)(0.90) = 3.6.

	 ✓	The standard deviation is .
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Graphing the binomial distribution
You may want to illustrate the binomial distribution with a histogram. A  
histogram shows the possible values of a probability distribution as a series 
of vertical bars. The height of each bar reflects the probability of each value 
occurring. A histogram is a useful tool for visually analyzing the properties of 
a distribution, and (by the way) all discrete distributions may be represented 
with a histogram. (See Chapter 2 for more about histograms and other types 
of graphs.)

For example, suppose that a candy company produces both milk chocolate 
and dark chocolate candy bars. The product mix is 50 percent of the candy 
bars are milk chocolate and 50 percent are dark chocolate. Say you choose 
ten candy bars at random, and choosing milk chocolate is defined as a  
success. The probability distribution of the number of successes during 
these ten trials with p = 0.5 is shown in Figure 8-1.
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Figure 8-1 shows that when p = 0.5, the distribution is symmetric about its 
expected value of 5 (np = 10[0.5] = 5), where the probabilities of X being 
below the mean match the probabilities of X being the same distance above 
the mean.

For example, with n = 10 and p = 0.5,

P(X = 4) = 0.2051 and P(X = 6) = 0.2051

P(X = 3) = 0.1172 and P(X = 7) = 0.1172
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If the probability of success is less than 0.5, the distribution is positively 
skewed, meaning probabilities for X are greater for values below the expected 
value than above it.

For example, with n = 10 and p = 0.2,

P(X = 4) = 0.0881 and P(X = 6) = 0.0055

P(X = 3) = 0.2013 and P(X = 7) = 0.0008

Figure 8-2 shows the probability distribution for n = 10 and p = 0.2.
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If the probability of success is greater than 0.5, the distribution is negatively 
skewed — probabilities for X are greater for values above the expected value 
than below it.

For example, with n = 10 and p = 0.8,

P(X = 4) = 0.0055 and P(X = 6) = 0.0881

P(X = 3) = 0.0008 and P(X = 7) = 0.2013

Figure 8-3 shows the probability distribution for the same situation when  
p = 0.8.
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Figure 8-3: 
Binomial 

distribution: 
ten trials 

with p = 0.8.
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Determining the Probability of  
the Outcome That Occurs First: 
Geometric Distribution

The geometric distribution is based on the binomial process. (That is, a 
series of independent trials with two possible outcomes. See the earlier  
section “Checking out the binomial distribution.”) You use the geometric 
distribution to determine the probability that a specified number of trials 
will take place before the first success occurs. Alternatively, you can use the 
geometric distribution to figure the probability that a specified number of 
failures will occur before the first success takes place.

The following section explains how to compute geometric probabilities and 
also how to compute the moments of the geometric distribution. You also 
see graphs that illustrate the properties of the geometric distribution.

Computing geometric probabilities
To calculate the probability that a given number of trials take place until the 
first success occurs, use the following formula:

P(X = x) = (1 – p)x – 1p for x = 1, 2, 3, . . .



132 Part II: Probability Theory and Probability Distributions 

Here, x can be any whole number (integer); there is no maximum value for x.

X is a geometric random variable, x is the number of trials required until the 
first success occurs, and p is the probability of success on a single trial.

For example, suppose you want to flip a coin until the first heads turns up. 
The probability that it takes four flips for the first heads to occur (that is, 
three tails followed by one heads) is P(X = x) = (1 – p)x – 1p. In this example,  
x = 4 and p = 0.5:

P(X = 4) = (1 – 0.5)3(0.5) = (0.125)(0.5) = 0.0625

To calculate the probability that a given number of failures occur before the 
first success, the formula is

P(X = x) = (1 – p)xp

x now represents the number of failures that occur before the first success. 
In addition, x can assume values 0, 1, 2, . . . instead of 1, 2, 3, . . .

For example, suppose you flip a coin until the first heads turns up. The  
probability that there will be three tails before the first heads turns up is  
P(X = x) = (1 – p)xp. In this example, x = 3 and p = 0.5:

P(X = 3) = (1 – 0.5)3(0.5) = (0.5)3(0.5) = (0.125)(0.5) = 0.0625

Both situations refer to getting three tails followed by a heads, so both  
formulas provide the same result.

Moments of the geometric distribution
The moments (see the earlier section “Moments of the binomial distribution” 
for a definition) of the geometric distribution depend on which of the following 
situations is being modeled:

	 ✓	The number of trials required before the first success takes place

	 ✓	The number of failures that occur before the first success

Just as with the binomial distribution discussed earlier in this chapter, the 
geometric distribution has a series of simplified formulas for computing 
these moments, which I explore in the following sections.
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Geometric distribution: Calculating the expected value
The expected value of the geometric distribution when determining the 
number of trials required until the first success is

The expected value of the geometric distribution when determining the 
number of failures that occur before the first success is

For example, when flipping coins, if success is defined as “a heads turns up,” 
the probability of a success equals p = 0.5; therefore, failure is defined as “a 
tails turns up” and 1 – p = 1 – 0.5 = 0.5. On average, there’ll be (1 – p)/p =  
(1 – 0.5)/0.5 = 0.5/0.5 = 1 tails before the first heads turns up.

Notice how the two results provide the same information; it takes an average 
of two flips to get the first heads, or on average there should be one tails 
before the first heads turns up.

Geometric distribution: Computing variance and standard deviation
The variance and standard deviation of the geometric distribution when 
determining the number of trials required until the first success or  
when determining the number of failures that occur before the first success are

For example, suppose you flip a coin until the first heads turns up. The 
expected number of trials required until the first heads turns up is

The variance is
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The standard deviation (σ) is .

Graphing the geometric distribution
You can illustrate the geometric distribution with a histogram. For example, 
say you do a series of ten trials. On each trial, the probability of success 
is 0.2. Figure 8-4 shows the probability distribution of the number of trials 
required to reach the first success.

	

Figure 8-4: 
Geometric 

distribution: 
ten trials 

with p = 0.2.
	

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

1 2 3 4 5 6 7 8 9 10 

P(x)

Number of trials until first successes (x)

Geometric Distribution
n = 10, p = 0.2

Unlike the binomial distribution, the geometric distribution is positively 
skewed for any value of p.

Keeping the Time: The  
Poisson Distribution

The Poisson distribution is useful for measuring how many events may occur 
during a given time horizon, such as the number of customers that enter a 
store during the next hour, the number of hits on a website during the next 
minute, and so forth. The Poisson process takes place over time instead of a 
series of trials; each interval of time is assumed to be independent of all other 
intervals.

For example, suppose that a bank counts the number of customers who  
enter each hour. If the number of customers that enter during a given hour is 
independent of the number that enter during all other hours (while the bank 
is open), you can use the Poisson distribution to find the probability that a 
specific number of customers enter the bank during the next hour.
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	 The Poisson distribution is named for Siméon Denis Poisson who was a French 
mathematician, physicist, and genius. He was wrong about only one major 
thing: He opposed the wave theory of light.

The following section shows you how to compute Poisson probabilities and 
how to compute moments for the Poisson distribution. Graphs are used to 
illustrate the key properties of the Poisson distribution.

Computing Poisson probabilities
You calculate Poisson probabilities with the following formula:

Here’s what each element of this formula represents:

	 ✓	X = a Poisson random variable

	 ✓	x = number of events whose probability you are calculating

	 ✓	λ = the Greek letter “lambda,” which represents the average number of 
events that occur per time interval

	 ✓	e = a constant that’s equal to approximately 2.71828

	 	e is a constant that’s widely used in financial applications. One of the 
most important uses is in computing present values of sums of money 
when interest rates are continuously compounded — compounded an 
infinite number of times. Most calculators have a key labeled ex that you 
can use to calculate the value of e raised to a specified power. In Excel, 
the appropriate function for determining the value of e is EXP.

For example, suppose that the number of messages that a person receives 
on his cellphone averages one per hour and that the number of messages 
received each hour is independent of all other hours. What’s the probability 
of his receiving two messages in the next hour?

In this case, the value of lambda (λ) is equal to 1, because the average 
number of messages each hour equals 1. The probability of receiving two 
messages during the next hour is

Alternatively, you can get results from a Poisson table set up like Table 8-2.
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Table 8-2	 Poisson Probabilities for Different Values of λ
λ = 0.5 λ = 1 λ = 1.5 λ = 2 λ = 2.5 λ = 3

x = 0 0.6065 0.3679 0.2231 0.1353 0.0821 0.0498
x = 1 0.3033 0.3679 0.3347 0.2707 0.2052 0.1494
x = 2 0.0758 0.1839 0.2510 0.2707 0.2565 0.2240
x = 3 0.0126 0.0613 0.1255 0.1804 0.2138 0.2240
x = 4 0.0016 0.0153 0.0471 0.0902 0.1336 0.1680
x = 5 0.0002 0.0031 0.0141 0.0361 0.0668 0.1008
x = 6 0.0000 0.0005 0.00035 0.0120 0.0278 0.0504
x = 7 0.0000 0.0001 0.0008 0.0034 0.0099 0.0216
x = 8 0.0000 0.0000 0.0001 0.0009 0.0031 0.0081

Table 8-2 shows the Poisson probabilities for different values of λ. In the  
cellphone example, because x = 2 and λ = 1, the appropriate probability  
P(X = 2) is found in the x = 2 row and the λ = 1 column. The probability is 
0.1839.

	 If you don’t care for using formulas or a table, try a specialized calculator or 
Excel. For Excel 2007 and older versions, use the POISSON function; for Excel 
2010, use the POISSON.DIST function.

The moments of the Poisson distribution are used to represent the average 
value of the distribution and the dispersion of the distribution. As with the 
binomial and geometric distribution, these moments may be computed with 
simplified formulas.

Poisson distribution: Calculating the expected value
As with the binomial and geometric distributions (discussed earlier in this 
chapter), you can use simple formulas to compute the moments of the 
Poisson distribution. The expected value of the Poisson distribution is

E(X) = λ

For example, say that on average three new companies are listed in the New 
York Stock Exchange (NYSE) each year. The number of new companies listed 
during a given year is independent of all other years. The number of new  
listings per year, therefore, follows the Poisson distribution, with a value of  
λ = 3. As a result, the expected number of new listings next year is λ = 3.
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Poisson distribution: Computing variance and standard deviation
Compute the variance and the Poisson distribution as σ2 = λ; the standard 
deviation (σ) equals .

Based on the NYSE listing example in the previous section, the variance 
equals 3 and the standard deviation equals .

Graphing the Poisson distribution
As with the binomial distribution, the Poisson distribution can be illustrated 
with a histogram. In Figures 8-5 through 8-7, the results are shown for three 
values of λ: 2 (Figure 8-5), 5 (Figure 8-6) and 7 (Figure 8-7).

For λ = 2 (Figure 8-5), the distribution is skewed to the right; for λ = 5  
(Figure 8-6), the distribution is nearly symmetric about the mean of 5;  
for λ = 7 (Figure 8-7), the distribution is skewed to the left.

	

Figure 8-5: 
Poisson 
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Figure 8-6: 
Poisson 

distribution 
with λ = 5
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Figure 8-7: 
Poisson 

distribution 
with λ = 7
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Chapter 9

The Uniform and Normal 
Distributions: So Many 

Possibilities!
In This Chapter
▶	Understanding the differences between discrete and continuous distributions
▶	Discovering the properties of the uniform distribution
▶	Checking out normal distribution probabilities

T 
his chapter introduces two important new probability distributions: the 
uniform and the normal. The normal distribution is especially important 

in business applications; it can be used to describe the behavior of many 
financial variables, such as the rate of return to an investment, a corpora-
tion’s annual profits, consumer spending on new products, and so on.

The uniform and the normal distributions have one important feature in 
common: they assign probabilities to ranges of values instead of individual 
values. This contrasts with the distributions found in Chapter 8: the binomial, 
geometric, and Poisson; these distributions assign probabilities to individual 
values.

The uniform distribution is used to describe a situation where all possible 
outcomes of a random experiment are equally likely to occur. For example, 
suppose that a manufacturer produces one-liter bottles of soda. The goal is 
to fill each bottle with exactly one liter of soda, but in actual practice, the 
acceptable range is between 0.99 and 1.01 liters. Any bottles that fall outside 
of this range are discarded. Suppose that for each acceptable bottle, the con-
tent is equally likely to be any value between 0.99 and 1.01 liters. In this case, 
the uniform distribution could be used to answer questions such as:
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What is the likelihood that a randomly chosen bottle contains between 
0.992 and 0.994 liters?

What is the likelihood that a randomly chosen bottle contains more than 
1 liter?

What is the average content of the acceptable bottles?

In this chapter I demonstrate how uniform probabilities may be determined 
with a graph or with an algebraic formula. I also show how the moments of 
the uniform distribution may be computed.

The normal distribution is the most widely used distribution in business 
because you can use it to model many variables. For example, you can use 
the normal distribution to describe the rates of return to financial assets, the 
distribution of corporate profits, the prices of key commodities (such as oil), 
and so forth. 

Suppose that the returns to the stocks in the Standard and Poor’s 500 (S&P 
500) index are normally distributed. The normal distribution could then be 
used to answer questions such as:

What is the probability that the S&P 500 will increase by at least 5 per-
cent next year?

What is the probability that the S&P 500 will fall next year?

How much risk is associated with investing in the S&P 500?

Due to the complexity of the normal distribution, I show you how to compute 
normal probabilities with standard tables in this chapter instead of formulas.

The following sections explain the differences between the two basic types of 
probability distributions: discrete and continuous. There is a detailed look at 
the properties of the uniform and normal distributions, including techniques 
for computing probabilities and moments.

Comparing Discrete and  
Continuous Distributions

Discrete and continuous distributions are the two standard types of prob-
ability distributions, which you use to compute probabilities for possible out-
comes of a random experiment. (For more about random experiments and 
probability distributions, see Chapter 7.)
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	 ✓	You use the discrete distribution with a random experiment that can 
generate a finite (countable) number of outcomes. (You see three exam-
ples of discrete distributions — binomial, geometric, and Poisson — in 
Chapter 8.)

	 ✓	You use the continuous distribution with a random experiment that can 
generate an infinite (uncountable) number of outcomes.

	 Intuitively, a random experiment can generate a finite (countable) number 
of outcomes if it’s possible to make up a list of all the possible outcomes of 
the experiment. For example, if a coin is flipped ten times, and heads turns up 
is the variable of interest, then there are 11 possible outcomes: 0, 1, 2, ..., 10. 
These outcomes could be easily listed. On the other hand, if an experiment 
consists of observing the length of time until the next phone call arrives, the 
number of possible times until the next phone call is infinite (uncountable). 
This is because the times are not restricted to whole numbers. The time could 
be 2.3 seconds, 1.41742 seconds, 8.19444212 seconds, and so on. A list con-
taining all possible times until the next phone call is impossible to construct, 
because there are an unlimited number of entries.

Computing probabilities for continuous distributions is more complex than 
for a discrete distribution; often, your best resources are tables or specialized 
calculators. For an example, visit www.solvemymath.com/online_math_
calculator/statistics/continuous_distributions/index.php.

Aside from the number of possible outcomes, one of the most important dif-
ferences between discrete and continuous distributions is this: With a contin-
uous distribution, the probability that a random variable (X) equals a specific 
constant (x) is defined as zero. With an infinite number of possibilities, the 
likelihood of X being equal to a specific value is infinitesimally small.

For example, the probability of tomorrow’s temperature at noon being 
exactly 72.141712987 degrees is pretty much zero. As a result, for any value 
x, P(X ≤ x) equals P(X < x). A statement such as “the probability that the tem-
perature at noon tomorrow will be less than or equal to 72 degrees” has the 
same interpretation as “the probability that the temperature at noon tomor-
row will be less than 72 degrees.”

To demonstrate this statement mathematically, you can write P(X ≤ x) as 
P(X < x) + P(X = x), because the probability that X is less than or equal to x 
consists of the sum of two different probabilities — the probability that X is 
strictly less than x and the probability that X is exactly equal to x. With a con-
tinuous distribution, P(X = x) = 0; therefore,

file:///Volumes/Working/Consumer/9781118630693/9781118630693%20Text/9781118630693%20Original%20Text/../../06 CE/02 Fm CE/www.solvemymath.com/online_math_calculator/statistics/continuous_distributions/index.php
file:///Volumes/Working/Consumer/9781118630693/9781118630693%20Text/9781118630693%20Original%20Text/../../06 CE/02 Fm CE/www.solvemymath.com/online_math_calculator/statistics/continuous_distributions/index.php
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Based on this reasoning, P(X ≥ x) = P(X > x) is also true.

	 With a discrete distribution, P(X ≤ x) does not equal P(X < x), and P(X ≥ x) does 
not equal P(X > x) unless P(X = x) = 0.

For example, suppose that a coin is flipped three times. The outcome of inter-
est is whether a head turns up on each flip.

The probability that two or fewer heads turns up is computed as:

The probability that fewer than two heads turn up is computed as:

Therefore, unless P(X = 2) = 0, P(X ≤ 2) and P(X < 2) gives different results.

In the continuous case, though, P(X ≤ 2) and P(X < 2) is always equal.

Working with the Uniform Distribution
The uniform distribution is a continuous distribution that assigns only positive 
probabilities within a specified interval (a, b) — that is, all values between a 
and b. (a and b are two constants; they may be negative or positive.)

For example, suppose that the U.S. Postal Service offers a special new deliv-
ery service; it’s guaranteed that the time required for a package to be deliv-
ered from New York City to Los Angeles is no more than 72 hours. (It also 
takes at least 24 hours for the package to be delivered.) If the delivery time 
is equally likely to be any value between 24 and 72 hours, then the uniform 
distribution can be used to compute probabilities for the delivery time. For 
example, suppose that a customer wants to know the likelihood that the 
package will be delivered between 24 and 36 hours after mailing; this can be 
computed with the uniform distribution.

In this case, the uniform distribution is defined over the interval (24, 72). (In 
other words, a = 24 and b = 72.) This implies that the probability of a package 
arriving in less than 24 hours or more than 72 hours equals 0. Furthermore, 
the probability of the package arriving within any given interval between 
24 and 72 hours depends only on the width of the interval. For example, the 
package is just as likely to arrive in 24 to 28 hours as it is to arrive in 68 to 72 
hours, because both of these intervals have a width of four hours.
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Although the uniform distribution may be defined for an infinite number of 
different intervals, if the distribution is defined over the interval (0, 1) it’s 
known as the standard uniform distribution. This indicates that all values 
between 0 and 1 are equally likely to occur.

The standard uniform distribution is used for random experiments where 
the outcome is equally likely to be any value between 0 and 1. For example, 
because probabilities are always between 0 and 1, the standard uniform distri-
bution can be used to describe a random process that generates probabilities. 

The standard uniform distribution is often used for simulation studies, in 
which the value of a variable is estimated by repeatedly choosing random 
numbers and substituting them into a mathematical model. For example, 
the sales of a new product could be estimated by choosing values from the 
standard uniform distribution and substituting the results into a model of 
consumer demand.

The uniform distribution and the standard uniform distribution are discussed 
at www.en.wikipedia.org/wiki/Uniform_distribution.

In the following sections, I explore the uniform distribution and all it has to 
offer, including how to visualize its intervals on a graph, how to calculate its 
moments, and how to work with its probabilities.

Graphing the uniform distribution
A discrete distribution may be described with a histogram, which is a special 
type of graph consisting of a series of vertical bars. Each bar represents a 
value or range of values, and the height of each bar represents the probabil-
ity of that value or range of values. (Histograms are introduced in Chapter 7.)

A continuous distribution can’t be illustrated with a histogram, because this 
would require an infinite number of bars. Instead, a continuous distribution 
may be illustrated with a line or a curve. Areas under the line or the curve 
correspond to probabilities.

With the uniform distribution, all values over an interval (a, b) are equally likely 
to occur. As a result, the graph that illustrates this distribution is a rectangle. 
Figure 9-1 shows the uniform distribution defined over the interval (0, 10).

The horizontal axis shows the range of values for X (0 to 10). The distribution 
assigns a probability of 0 to any value of X outside of the interval from 0 to 10.

file:///Volumes/Working/Consumer/9781118630693/9781118630693%20Text/9781118630693%20Original%20Text/../02 Fm AR/9781118630693 ch03_fromAR.doc
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Figure 9-1: 
The uniform 
distribution 

defined over 
the interval 

(0, 10).
	

The width of this interval equals the upper limit (b) minus the lower limit (a), 
which equals b – a. So in Figure 9-1, the width equals 10 – 0 = 10. The width of 
this interval represents the base of the rectangle. The height of the rectangle 
equals 1 divided by the base (1/10 in this case). The height always equals 1 
divided by the base; this ensures that the area of the rectangle always equals 
1. As discussed in the later section “Computing uniform probabilities,” areas 
under this rectangle represent probabilities. The total probability for any dis-
tribution is 1; therefore, the area under the rectangle must equal 1.

	 The area of a rectangle equals the base times the height, or in mathematical 
terms, A = b × h.

Discovering moments of  
the uniform distribution
Moments are a set of summary measures that express the properties of the 
probability distribution of a random variable. (For more about the moments 
of a probability distribution, see Chapter 7.) The moments include expected 
value (mean) and variance. Standard deviation is not a separate moment, but 
is instead the square root of the variance.

As discussed in Chapter 7, the expected value represents the average value 
of all the possible values of a probability distribution, weighted by the prob-
abilities of these values. The variance and standard deviation measure the 
“spread” among the possible values of the distribution.

For example, suppose that an art gallery sells two types of art work: inexpen-
sive prints and original paintings. The length of time that the prints remain in 
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inventory is uniformly distributed over the interval (0,40). For example, some 
prints are sold immediately; no print remains in inventory for more than 40 
days. For the paintings, the length of time in inventory is uniformly distrib-
uted over the interval (5, 105). For example, each painting requires at least 5 
days to be sold and may take up to 105 days to be sold.

The expected value, variance, and standard deviation are much lower for the 
prints because the range of possible values is much smaller. On average, prints 
sell much faster than paintings. In addition, the inventory times of the prints 
are much closer to each other than for the paintings. The uniform distribution 
has simple formulas for calculating the moments, which I describe in the fol-
lowing sections.

Uniform distribution: Calculating the expected value
For any probability distribution, the expected value represents the aver-
age value of the distribution. For the uniform distribution, you calculate the 
expected value as the midpoint of the interval over which the distribution is 
defined.

For example, suppose that the uniform distribution is defined over the inter-
val (a, b). You calculate the expected value as

The key terms in this formula are

	 ✓	X = a uniformly distributed random variable defined over the interval (a, b)

	 ✓	E(X) = the expected value of X

	 ✓	a = the lower limit of the interval

	 ✓	b = the upper limit of the interval

The expected value formula for the uniform distribution is illustrated in 
Figure 9-2.

The graph in Figure 9-2 shows that the expected value is the midpoint of the 
interval (a,b). In other words, it’s half-way between a and b.

As an example, the expected value of the uniform distribution defined over 
the interval (1,5) is computed as follows:
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Figure 9-2:  
The 

expected 
value of the 

uniform  
distribution.

	

Uniform distribution: Computing variance and standard deviation
In addition to the expected value, a probability distribution can be character-
ized by the variance and the standard deviation. These values measure the 
degree of dispersion (spread) among the values of a probability distribution.

For the uniform distribution defined over the interval from a to b, the vari-
ance equals

The standard deviation is the square root of the variance:

For example, the variance of the uniform distribution defined over the inter-
val (1, 5) is computed as follows:
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The standard deviation is:

Computing uniform probabilities
You can compute probabilities for the uniform distribution with formulas or 
graphs. When using graphs to compute uniform probabilities, you are com-
puting areas within the rectangle that describes the uniform distribution.

Computing uniform probabilities with formulas
For example, suppose the random variable X is uniformly distributed over 
the interval (a, b). You compute the probability that X is less than or equal to 
a specified value of x, using this formula:

If, for example, X is a uniform random variable with a = 0 and b = 10. You find 
the probability that X is less than or equal to 7 by these calculations:

To determine the probability that X is greater than or equal to x, use the fol-
lowing formula:

This is true because with a continuous random variable, 

For a continuous random variable X, either X ≤ x or X ≥ x must be true; there-
fore, the probabilities of these events must sum to 1. (Recall from Chapter 6 
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that these events are complements.) So rearranging algebraically gives 
you the following:

As an example, to calculate the probability that a uniform random variable 
X defined over the interval (0, 10) is greater than or equal to 2, apply the for-
mula and solve:

To calculate the probability that X is between two constants a and b, use the 
following formula:

For example, you compute the probability that a uniform random variable X 
defined over the interval (0, 10) is between 3 and 6 as 

 

and follow these steps:

	 1.	 Determine the probability that X is less than or equal to 6:

		

	 2.	 Compute the probability that X is less than or equal to 0.3:
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	 3.	 Combine the results:

		

One of the unique properties of the uniform distribution is that the probabil-
ity that X falls within a given range of values depends only on the width of the 
range. For example, for the standard uniform distribution, the following prob-
abilities are equal:

Each of these probabilities equals 0.1, which you can compute as 

Then follow these steps:

	 1.	 Determine the probability that X is less than or equal to 0.2:

		

	 2.	 Compute the probability that X is less than or equal to 0.1:

		

	 3.	 Combine the results:

		

Computing uniform probabilities with graphs
You can also compute probabilities graphically for the uniform distribution 
by computing areas under a rectangle (see the earlier section “Graphing the 
uniform distribution”). For example, Figure 9-3 shows the probability that a 
standard uniform random variable X is between 0.3 and 0.6.



150 Part II: Probability Theory and Probability Distributions 

	

Figure 9-3:  
Graph 

showing the 
probability 

that X is 
between 0.3 

and 0.6.
	

The horizontal axis shows that the distribution is defined over the interval from 
0 to 1. The width of this interval, which is the base of the rectangle, equals 1 – 0 = 
1. The height of the rectangle equals 1 divided by the base, or 1/1 = 1. The area of 
the rectangle equals the base times the height, which is 1 × 1 = 1.

To find the probability that X is between 0.3 and 0.6, you compute an area 
within the rectangle (see the shaded region in Figure 9-3). The base of this 
shaded region equals 0.6 – 0.3 = 0.3. The height equals 1. Therefore, the area 
equals 0.3 (0.3 × 1). The probability that X is between 0.3 and 0.6 is 0.3, which 
matches the result found with the algebraic formula.

Understanding the Normal Distribution
The normal distribution is a continuous probability distribution that can be 
used to describe a large number of different situations, not just in business 
applications but in a wide variety of other disciplines, such as psychology, 
sociology, biology, and so on. The normal distribution, sometimes called the 
Gaussian distribution, is named after scientist and mathematician Johann Carl 
Friedrich Gauss who introduced the concept. 

The normal distribution has several useful properties that can be used to 
describe real-world events. For example, under the normal distribution, there 
is a balance or symmetry between the likelihood of a value being below the 
mean of the distribution and being above the mean of the distribution.
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As an example, suppose that researchers have determined that the heights of 
all men in a country are normally distributed with a mean of 69 inches and a 
standard deviation of 2 inches. Based on the normal distribution, the follow-
ing events are equally likely:

A randomly chosen man is no more than 67 inches tall

A randomly chosen man is at least 71 inches tall

These events are equally likely because:

A height of 67 inches is one standard deviation below the mean  
(69 – 1(2) = 67)

A height of 71 inches is one standard deviation above the mean  
(69 + 1(2) = 71)

Similarly, the following events are equally likely:

A randomly chosen man is no more than 65 inches tall 

A randomly chosen man is at least 73 inches tall

These events are equally likely because:

A height of 65 inches is two standard deviations below the mean  
(69 – 2(2) = 65)

A height of 73 inches is two standard deviations above the mean  
(69 + 2(2) = 73)

Because the normal distribution is a continuous distribution, it’s defined for an 
infinite number of values. Unlike the uniform distribution, the normal distribu-
tion is defined for all values between negative infinity and positive infinity.

In the following sections, I show you how you can express the normal distri-
bution graphically, I introduce you to the standard normal distribution, and I 
walk you through calculating probabilities for the normal distribution.

Graphing the normal distribution
The normal distribution can be graphed with a special type of curve, which 
is usually described as a bell-shaped curve. Normal probabilities can be deter-
mined by computing areas under this curve. 
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The bell-shaped curve has several key features. It’s defined over the entire 
range of values between negative and positive infinity; it’s symmetrical about 
the mean (for example, the area below the mean is a mirror image of the area 
above the mean); and most of the area under the normal distribution is close 
to the mean. The area declines rapidly for values that are several standard 
deviations away from the mean.

As an example, the distribution of heights from the previous example is illus-
trated with a bell-shaped curve as shown in Figure 9-4.

	

Figure 9-4: 
The bell-

shaped 
curve of the 
distribution 
of heights.

	

The mean of 69 inches is at the center of the distribution; the area to the left 
of the mean is a mirror image of the area to the right of the mean. Most of 
the area under the curve is close to the mean; the area falls off rapidly for 
large and small values of X. (The extreme right and left ends of the curve are 
known as the tails of the distribution.)

Figure 9-5 shows that the probability of a randomly chosen man’s height 
being between 67 inches and 71 inches is 68.27 percent.

The shaded region under the curve represents heights between 67 and 71 
inches. This covers 68.27 percent of the area under the curve; therefore, the 
probability that a randomly chosen man’s height is between 67 inches and 71 
inches is 0.6827 or 68.27 percent.



153 Chapter 9: The Uniform and Normal Distributions: So Many Possibilities!

	

Figure 9-5:  
The dis-
tribution 

of heights 
between 67 
inches and 
71 inches.

	

The normal distribution is uniquely characterized by two values:

	 ✓	The expected value (mean), represented by μ (the Greek letter “mu”)

	 ✓	The standard deviation, represented by σ (the Greek letter “sigma”)

There are an infinite number of different possible normal distributions, each 
with a different value of the mean and standard deviation.

The normal distribution in statistical analysis
The normal distribution is used in conjunction 
with many statistical techniques. It plays a key 
role in a lot of applications, such as the following:

	✓	 Computing confidence intervals

	✓	 Testing hypotheses about the mean of a 
population

	✓	 Testing hypotheses about the means of two 
populations

	✓	 Regression analysis

In many business applications, variables are 
assumed to be normally distributed. For exam-
ple, returns to stocks are often assumed to 

be normally distributed by investors, portfolio 
managers, financial analysts, risk managers, 
and so on. The assumption of normality is not 
only convenient, but many standard statistical 
techniques require it in order to generate valid 
results. For example, computing a confidence 
interval for the mean of a population may be 
based on the normal distribution. Many of the 
techniques used in regression analysis to check 
the validity of the results are based on the 
normal distribution. As a result, even when the 
assumption of normality is not perfectly accu-
rate, the normal distribution is often used to per-
form statistical analyses due to its convenience.
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Getting to know the standard  
normal distribution
The standard normal distribution is the special case where μ = 0 and σ = 1.

For example, suppose that the daily returns to a stock follow the standard 
normal distribution. The mean return over a single trading day is 0 percent, 
and the standard deviation is 1 percent; as a result:

The probability that tomorrow’s return will be between -1 percent and +1 
percent is 0.6827 or 68.27 percent. –1 percent represents one standard 
deviation below the mean, while +1 percent represents one standard 
deviation above the mean.

The probability that tomorrow’s return will be between –2 percent and 
+2 percent is 0.9544 or 95.44 percent. –2 percent represents two standard 
deviations below the mean, while +2 percent represents two standard 
deviations above the mean.

The probability that tomorrow’s return will be between –3 percent and +3 
percent is 0.9973 or 99.73 percent. –3 percent represents three standard 
deviations below the mean, while +3 percent represents three standard 
deviations above the mean.

	 By convention, the letter Z represents a standard normal random variable, 
whereas the letter X represents any other normal random variable.

Computing standard normal probabilities
One approach to computing probabilities for the standard normal distribu-
tion is to use statistical tables. (For the mathematically inclined, the tables 
result from applying calculus to the normal distribution.)

The standard normal table is designed to show cumulative probabilities; 
i.e., the probability that a standard normal random variable Z is less than or 
equal to a specified value, such as P(Z ≤ 2.50). Standard normal tables are 
divided into two parts; the first shows positive values for Z, and the second 
shows negative values for Z.

Computing other types of probabilities, such as P(Z ≥ 1.70), can be accom-
plished by using the properties of the standard normal distribution to rear-
range these probabilities in a more convenient form.

The following sections illustrate how to compute any time of normal prob-
abilities using the standard normal tables.
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Computing “Less Than or Equal to” Standard Normal Probabilities
Table 9-1 shows a portion of the standard normal table for positive values of Z. 
(The actual table typically shows Z values between 0 and 3.)

Table 9-1	 Standard Normal Table — Positive Values
Z 0.00 0.01 0.02 0.03
0.9 0.8159 0.8186 0.8212 0.8238
1.0 0.8413 0.8438 0.8461 0.8485
1.1 0.8643 0.8665 0.8686 0.8708
1.2 0.8849 0.8869 0.8888 0.8907

The table shows the probability that a standard normal random variable Z is 
less than or equal to a specific value. For example, to express the probability 
that Z is less than or equal to 1, you write P(Z ≤ 1.00). Here’s how you find 
this probability:

	 1.	 Take the first digits before and after the decimal point (1.0 in 1.00) 
from the Z column, second row.

	 2.	 Take the second digit after the decimal point (0.00 in 1.00) from the 
corresponding column (0.00 in this case).

	 3.	 Find the appropriate probability at the intersection of this row and 
column.

		  Using this technique, the table shows that P(Z ≤ 1.00) = 0.8413. Figure 9-6 
shows this expression graphically.

The shaded region to the left of 1 represents 84.13 percent of the area under 
the curve; therefore, P(Z ≤ 1.00) = 0.8413 or 84.13 percent.

Negative probabilities also have a corresponding standard normal table. 
Take a look at Table 9-2. This shows several negative values for Z; the actual 
table typically shows values ranging from 0 to –3.
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Figure 9-6: 
Standard 

normal 
probability 

distribution 
where  

P(Z ≤ 1) 
equals 
0.8413.

	

Table 9-2	 Standard Normal Table — Negative Values
Z 0.00 0.01 0.02 0.03
–1.3 0.0968 0.0951 0.0934 0.0918
–1.2 0.1151 0.1131 0.1112 0.1093
–1.1 0.1357 0.1335 0.1314 0.1292
–1.0 0.1587 0.1562 0.1539 0.1515

Say you want to compute the probability that Z is less than –1.23, which you 
write as P(Z ≤ –1.23). The first digits before and after the decimal point (–1.2 
in –1.23) are in the Z column, second row. The second digit after the decimal 
point (0.03 in –1.23) is in the far right column. You find the probability at the 
intersection of the row and column, so the table shows that P(Z ≤ –1.23) = 
0.1093. This is shown in Figure 9-7.

One of the drawbacks to using tables to compute standard normal prob-
abilities is that they show only cumulative probabilities for Z; for example, Z 
is less than or equal to a specific value. But you can figure all other cases by 
combining the properties of the standard normal distribution with the tables.
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Figure 9-7: 
Standard 

normal 
probability 

distribution 
where  

P(Z ≤ –1.23) 
equals 
0.1089.

	

Property 1: The area under the standard normal curve equals 1
The first of these properties is that the entire area under the standard normal 
curve equals 1. Because the curve covers the entire area between negative 
and positive infinity (∞), you can express this result as P(–∞ ≤ Z ≤ ∞) = 1. So 
the probability that a standard normal random variable Z falls between nega-
tive infinity and positive infinity is 1; in other words, Z will fall within this 
interval with certainty.

	 When you consider all possible outcomes in any given situation, you can be 
certain that one outcome will occur. A probability of 1 indicates that an event 
will occur with certainty. A probability of 0 indicates that an event is impossi-
ble. All other probabilities fall between 0 and 1. (Probability theory is covered 
in Chapter 6.)

Property 2: The standard normal curve is symmetrical about the mean
The next key property of the standard normal distribution is symmetry, 
where the area to the left of the mean is a mirror image of the area to the 
right. As a result, the probability that Z is less than the mean is 0.5, and you 
write it as P(Z ≤ 0) = 0.5 (because half of the area under this distribution is to 
the left of the mean, and half is to the right of the mean; the total area is 1), as 
shown in the Figure 9-8.

Because P(Z ≤ 0) = 0.5, due to the symmetry of the standard normal probabil-
ity distribution, it’s also true that P(Z ≥ 0) = 0.5, as illustrated in Figure 9-9.
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Figure 9-8: 
Standard 

normal 
probability 

distribution 
where  

P(Z ≤ 0) = 
0.5.

	

	

Figure 9-9: 
Standard 

normal 
probability 

distribution 
where  

P(Z ≥ 0) = 
0.5.

	

Other examples of symmetry include
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Computing “greater than or equal to” standard normal probabilities
One type of probability you can’t compute directly from a table is the case 
where a standard normal random variable Z is greater than or equal to a speci-
fied value z: P(Z ≥ z). Instead, you rearrange the identity to yield a very useful 
result:

This is a consequence of the first property of the standard normal distribu-
tion: The area under the standard normal curve equals 1.

Rearranging this equation gives you

 

For example, to determine the probability that a standard normal random 
variable is greater than 1 (for example, P(Z ≥ 1), the first step is to rewrite the 
probability in a form that enables you to use the standard normal tables. This 
is shown as:

The result is shown in Figure 9-10.

	

Figure 9-10: 
Standard 

normal 
probability 

distribution 
where P(Z ≥ 

1) = 0.1587.
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Computing “in between” standard normal probabilities
Another type of probability that you can’t compute directly from a stan-
dard normal table is the case where a standard normal random variable Z is 
between two constants: c and d: P(c ≤ Z ≤ d). But, lucky for you, you can work 
around this with the following identity:

You can now compute this probability by looking up P(Z ≤ c) and P(Z ≤ d) in 
the standard normal table and computing the difference between them.

For example, suppose that you want to know the probability that Z is 
between one and two standard deviations above the mean. In this case,  
c = 1.00 and d = 2.00. This probability can be expressed as follows:

Algebraically, this can be rearranged in a form that involves two “less than or 
equal to” probabilities that can be looked up in the standard normal tables:

From the standard normal table (Table 9-1):

As a result, you calculate the probability:

Figure 9-11 illustrates this probability.

Note that you can use this approach for negative values, too. For example, 
from the standard normal table (Table 9-2),

,
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Figure 9-11: 
Standard 

normal 
probability 

distribution 
where P(1.0 
≤ Z ≤ 2.0) = 

0.1359.
	

As a result:

Computing normal probabilities  
other than standard normal
Many variables in business applications are assumed to be normally distrib-
uted, including rates of returns to stocks and other financial assets. Although 
these variables are normal, they’re usually not standard normal. As a result, 
you can’t compute probabilities for these variables from the standard normal 
tables without first transforming them into the equivalent standard normal 
form, as shown with the following formula:

In this expression, Z is a standard normal random variable, and X is a normal 
random variable with mean μ and standard deviation σ.
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For example, suppose that the annual return of the stock of the Gamma 
Corporation is normally distributed with a mean of 5 percent and a standard 
deviation of 2 percent. What’s the probability that the return from this stock 
over the coming year will be 4 percent or less?

Let X be a random variable that represents “the annual return for the stock 
of Gamma Corporation.” X is a normally distributed random variable with 
a mean (μ) of 0.05 and a standard deviation (σ) of 0.02. X is not standard 
normal, because the mean isn’t 0 and the standard deviation isn’t 1.

To compute this probability, convert the rate of return X into a standard 
normal random variable Z as follows:

Based on the standard normal tables (refer to Tables 9-1 and 9-2 in the earlier 
section “Computing standard normal probabilities”), P(Z ≤ –0.5) = 0.3085, so 
the probability that the stock’s return will be 4 percent or less is 0.3085 or 
30.85 percent.

Similarly, you can determine the probability that the stock’s return next year 
will be 8 percent or more like so:

Recall from the earlier section “Computing “greater than or equal to” standard 
normal probabilities” the following key property for the standard normal 
distribution:

Rearranging this algebraically gives:

Therefore,

Based on the standard normal table (Table 9-1):
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Therefore, 

the probability that the stock’s return next year will be between 7 percent 
and 10 percent as follows:

As another example, imagine that the scores on a standardized test are nor-
mally distributed with a mean score of 80 and a standard deviation of 10. If a 
student receives a score of 90, he was outperformed by what proportion of 
all other students taking the test?

In other words, what is the probability of receiving a score of more than 90 
on this test? Let X represent the random variable “score on the exam.” X is 
a normally distributed random variable with a mean of 80 and a standard 
deviation of 10. Because X isn’t a standard normal random variable, you must 
convert it:

Due to the symmetry of the standard normal distribution,

From the standard normal table (Table 9-1), 
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Therefore,

 

or only 15.87 percent of the students taking the exam scored better than 90.

These techniques can be used to compute any normal probability, whether 
it is expressed as greater than, less than, or between, and regardless of the 
mean and standard deviation of the distribution.



Chapter 10

Sampling Techniques and 
Distributions

In This Chapter
▶	Getting familiar with sampling techniques
▶	Using sampling distributions to estimate probabilities

A 
 population is a collection of data that we are interested in studying; a 
sample is a selection of data randomly chosen from a population. The 

use of sample data is the basis for a wide variety of business applications. 
This is because obtaining information about an entire population is likely to 
be very time-consuming and costly. Instead, samples may be used to under-
stand the behavior of the underlying population. 

For example, if a department store wants to know which types of new prod-
ucts customers are willing to buy, the store may not have the resources to 
survey every single one of its customers. Instead, if the store can choose rep-
resentative samples of its customers to survey, it could potentially obtain the 
same information at a fraction of the cost.

One of the requirements of using samples to draw conclusions about a popula-
tion is that the samples accurately mirror the population; otherwise, any con-
clusions that are reached about the population are bound to be inaccurate.

Several different types of sampling techniques have been developed to 
accurately capture the properties of a population. The choice of technique 
depends on several factors, such as:

What are the demographic characteristics of interest?

How easy will it be to obtain sample data?

How much data is needed to ensure accurate results?



166 Part II: Probability Theory and Probability Distributions 

For example, suppose that the New York State government wants to analyze 
the distribution of ages of everyone living in the state. This helps determine 
what type of funding is needed for various programs in the future. Although 
the ages of every single resident could be collected, this could be very time 
consuming and costly.

Instead, suppose the government decides to randomly sample residents 
throughout the state and use this information to estimate the distribution 
of ages. Clearly, it makes no sense to focus only on high school students, 
because their ages are substantially lower than the overall population. 
Instead, samples are chosen that ideally match the demographic character-
istics of the entire state. For example, questionnaires could be mailed to ran-
domly chosen addresses throughout the state.

In this chapter, I introduce several types of sampling techniques that may be 
used for various types of studies. I also show you a special type of probability 
distribution, known as a sampling distribution. This is a special type of prob-
ability distribution that describes the properties of a sample statistic. (Sample 
statistics are summary measures of a sample; these include the sample mean, 
sample variance and sample standard deviation. Sample statistics are dis-
cussed in Chapters 3 and 4.) Due to its widespread use in statistical analysis, 
I focus on the sampling distribution of the sample mean.

Sampling Techniques: Choosing  
Data from a Population

Statistical inference is a methodology that lets you draw conclusions about a 
population from sample data. One of the most important challenges in statis-
tical inference is choosing samples that accurately reflect the characteristics 
of the underlying population. Although you can choose from many sampling 
techniques, the appropriate technique depends on the type of information 
you’re studying and your resources.

You can classify the two basic approaches to sampling as probability sam-
pling and nonprobability sampling. Probability sampling is used when it is 
important to ensure that each member of a population has a chance of being 
chosen. Nonprobability sampling is a more subjective approach, and is often 
used when it would be difficult or impossible to use probability sampling. 
I explore both of these approaches in the following sections.
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Probability sampling
When you use probability sampling, each member of the population has a 
chance of being chosen for the sample. In some of these techniques, each 
population member is equally likely to be chosen; in others, this is not the 
case. With probability sampling, it’s possible to determine the probability 
that a given member of the population will be chosen. 

Within the category of probability sampling, you can choose from four types 
of sampling techniques, which I discuss in the following sections.

Simple random samples
In a simple random sample, each member in the population is equally likely 
to be chosen. There are several different ways in which population members 
may be chosen with equal probability. One approach is to assign a numerical 
value to each population member and then randomly choose numbers that 
correspond to these members.

For example, suppose a population consists of the following ten members of 
the finance faculty at a prestigious university:

	 1.	 Benjamin Harrison

	 2.	 Martin Van Buren

	 3.	 John Tyler

	 4.	 Millard Fillmore

	 5.	 Grover Cleveland

	 6.	 Chester Arthur

	 7.	 James Polk

	 8.	 Zachary Taylor

	 9.	 James Buchanan

	 10.	 Franklin Pierce

You would like to randomly choose five of these faculty members for a newly 
formed committee. You assign each faculty member a number from one to 
ten. (This could be done alphabetically or in any number of other ways.) To 
choose a simple random sample of five of these faculty members, you can 
use a random number generator. 

A random number generator is a function that can be used to randomly 
choose numbers within a specified interval. As an example, you can use 
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Excel’s RANDBETWEEN function; this generates whole numbers that are ran-
domly chosen between any two values you specify. 

For this example, you would need to generate a random number between 1 
and 10. You would then enter RANDBETWEEN(1,10) into Excel and record the 
resulting number. You would repeat this process until you have five unique 
numbers. The faculty members associated with these numbers are then 
chosen for the new committee.

	 In this example, you don’t want to choose the same number twice; if this hap-
pens, you simply discard the result and choose another random number until 
you have five unique numbers. The process you are using is known as sam-
pling without replacement. If you are willing to choose the same number more 
than once, then no results would be discarded; the process that you would be 
using is known as sampling with replacement.

Suppose the following sequence of random numbers is chosen:

RANDBETWEEN(1,10) = 1

RANDBETWEEN(1,10) = 4

RANDBETWEEN(1,10) = 5

RANDBETWEEN(1,10) = 8

RANDBETWEEN(1,10) = 6

Your simple random sample would then consist of the following faculty 
members:

	 1.	 Benjamin Harrison

	 4.	 Millard Filmore

	 5.	 Grover Cleveland

	 8.	 Zachary Taylor

	 6.	 Chester Arthur

These are the lucky members of the new committee.

Systematic samples
With systematic samples, population members are assigned a numerical value, 
as is the case with simple random samples. Instead of using random num-
bers to choose population members, though, you will instead use a specific 
sequence of numbers.
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For example, suppose an economist wants to study the distribution of 100 
household incomes in a small town and wants to draw a sample size of ten. 
In this case, the economist draws every tenth population member (because 
the number of households divided by the sample size equals 100/10 = 10). 
One way she can draw every tenth member is to start with a random number 
(between 1 and 10) and then add ten to each number to get the desired 
sequence.

For example, you could use RANDBETWEEN(1,10) to obtain the starting value 
for the sequence. If this turns out to be a 3, then the appropriate sequence of 
random numbers would be:

3, 13, 23, 33, 43, 53, 63, 73, 83, 93

If instead the function RANDBETWEEN(1,10) generates a 5, then the appropri-
ate sequence of random numbers would be:

5, 15, 25, 35, 45, 55, 65, 75, 85, 95

Other techniques could be used to randomly choose the first value, such as 
the flip of a coin, the roll of a die, and so on. Similarly, if a population con-
tains 1,200 members and the economist wants a sample size of ten, the num-
bering sequence includes every 120th member (1,200/10 = 120). One way she 
can draw every 120th member is to start with a random number (between 1 
and 120) and then add 120 to each number to get the sequence.

In this case, suppose that the function RANDBETWEEN(1,120) results in a 
value of 57; then the sequence would consist of the following values:

57, 177, 297, 417, 537, 657, 777, 897, 1017, 1137

As another example, suppose that a marketing firm wants to find out whether 
consumers are responding favorably to a newly launched advertising cam-
paign. A researcher could choose a busy mall and ask every 20th customer 
that walks by how he or she feels about the new advertising campaign. In this 
case, though, the researcher wouldn’t have a specific sequence of numbers, 
because it’s impossible to determine in advance how many people are in the 
mall at any given time.

In this case, systematic samples are chosen based on incomplete knowledge 
of the underlying population. This approach is useful when the size of the 
entire population is not known. 
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Stratified samples
When using stratified samples, you divide a population into strata (levels or 
layers). The strata may reflect any of a wide variety of characteristics of the 
population data, such as ages, incomes, levels of education, and so on.

Basically, you choose a stratified sample in such a way that you ensure 
that the proportion of sample members in each stratum (singular of strata) 
matches the distribution found in the population.

For example, suppose a college wants to conduct a survey of student atti-
tudes toward the building of a costly new sports stadium as an alternative to 
expanding the current antiquated library. Instead of surveying every single 
student in the school, the college chooses stratified samples. It divides the 
entire student body by class: freshmen, sophomores, juniors, and seniors. 
(Assume for this example that the school doesn’t offer any graduate pro-
grams, so all students belong to one of these four classes.) Here’s how the 
classes break down:

Class Number of Students
Freshmen 800
Sophomores 1,200
Juniors 1,000
Seniors 1,000

And the percentages of students in each class are as follows:

Class Number of Students Percentage of Total
Freshmen 800 20 percent
Sophomores 1,200 30 percent
Juniors 1,000 25 percent
Seniors 1,000 25 percent

If the college chooses a stratified sample of 200 students, the sample consists 
of the following:

40 freshmen (20 percent of 200)

60 sophomores (30 percent of 200)

50 juniors (25 percent of 200)

50 seniors (25 percent of 200)

Within each stratum, a simple random sample of the appropriate number of 
students is chosen. This selection method ensures that no class is under- or 
overrepresented in the sample data.
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One of the advantages of the stratified sample approach is that you can draw 
conclusions about each individual stratum. For example, the college can ana-
lyze the attitudes of freshmen separately from the attitudes of sophomores, 
juniors, and seniors. On the other hand, one of the disadvantages of this 
approach is that you need more information about the characteristics of the 
population than with other approaches, such as the simple random sampling 
approach discussed earlier. In this example, you need to know the distribu-
tion of students among the freshman, sophomore, junior, and senior classes.

Cluster samples
With cluster samples, you subdivide a population into groups based on 
common characteristic (such as location, age, income level, and so forth). 
You choose groups randomly, and then you choose samples from those 
groups randomly.

Say you’re a researcher conducting a national survey about attitudes toward 
proposed national legislation. You divide the entire voting age population of 
the United States into groups according to state of residency. You decide to 
choose a sample of eight states; you believe that this is sufficient to repre-
sent the entire country.

In this case, you would first assign a number to each state in the United 
States. Next, you could use the function RANDBETWEEN(1,50) until you 
choose eight different states.

Within each selected state, voting age residents are randomly chosen using 
a simple random sample. This may be accomplished by assigning a number 
to each registered voter and then using a random number generator to ran-
domly pick the desired number of voters.

Suppose that the following states are chosen:

Wisconsin

Rhode Island

Michigan

Utah

Illinois

South Carolina

Arizona

Oregon

Within each state, you choose simple random samples of voters.
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The advantage of using cluster sampling is that it can be implemented more 
quickly and cheaply than stratified sampling. In this example, stratified sam-
pling requires voters to be randomly chosen from each of the 50 states. The 
disadvantage of using cluster sampling is that it may not be as accurate as 
stratified sampling.

Nonprobability sampling
Unlike probability sampling, nonprobability sampling doesn’t guarantee that 
each population member has a chance of being chosen. And with nonprob-
ability sampling, you have to use subjective judgment.

One of the major drawbacks to nonprobability samples is that the results 
aren’t as reliable for drawing conclusions about the overall population. It 
may be easier to get the samples, but there’s a price — they’re less useful 
than probability samples.

I discuss four of the nonprobability sampling techniques in the following sec-
tions, including convenience samples, quota samples, purposive samples, 
and judgment samples.

Convenience samples
When you choose population members primarily because they’re accessible, 
you’re using convenience samples. For example, if a marketing firm needs to 
study consumer attitudes toward new products, it may be forced to rely on 
the input of people who are willing to participate; they are not necessarily 
representative of the overall population. 

Suppose for example a marketing firm decides to conduct a series of inter-
views at a mall to determine which new movies are likely to do well at 
the box office. The interviews are conducted at 3:00 in the afternoon on a 
Wednesday. Although there may be many volunteers who are willing to take 
part in the interviews, most or all of them are likely to be students and/or 
retirees, which doesn’t reflect the overall population. Unless the marketing 
firm is only interested in the views of these groups, the results are not likely 
to be accurate.

Quota samples
Quota samples are closely related to stratified samples; in both cases, you 
divide population members into separate groups. The main difference is that 
with a quota sample, the number of sample members in each stratum may 
not exactly represent the numbers in the underlying population.
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For example, suppose that a college is interested in comparing the GPA of its 
male and female students. Assume that the proportion of male students at 
this college is 60 percent, so the proportion of female students is 40 percent. 
A stratified sample would ensure that 60 percent of the sample members are 
male, and 40 percent are female. With a quota sample, any number of males 
and females may be chosen. Suppose that the college doesn’t know the exact 
proportion of male and female students, so it decides to choose an equal mix 
of male and female students for the sample. Clearly, this doesn’t reflect the 
proportions in the actual population.

Purposive samples
With purposive samples, you choose members of the population because 
they’re not typical in some important way. For example, a company that pro-
duces a new product may be concerned that the product is too expensive 
for the average consumer to buy. The company may target students (who 
presumably have low incomes) to determine whether they’d consider buying 
the product. The logic is that if the product isn’t too expensive to people 
with relatively low incomes, it won’t be too expensive to people with higher 
incomes.

As another example, suppose that a snack foods company manually inspects 
all the potato chips that it produces before they are sold to the public. Any 
chips that appear to be burned are automatically discarded. This process 
is very time consuming and costly; the company wants to try a different 
approach.

Suppose that the smallest chips are most likely to be burned. Rather than 
inspecting every single potato chip, the company decides to save time by 
only inspecting the chips that appear to be unusually small. If these are not 
burned, the remaining chips are probably acceptable. The company is now 
using purposive samples to represent the entire population.

Judgment samples
When conducting a study with a judgment sample, you chose members based 
on your subjective judgment. You choose these members because they 
offer specific characteristics of interest. For example, suppose that half of 
the residents of a city are male (and, therefore, half are female). A handbag 
manufacturer wants to determine which features are most important to con-
sumers in this city. If the company chooses to survey customers in the local 
mall, it may go out of its way to question a larger number of female custom-
ers (rather than male customers) because most handbags are purchased by 
women.
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Sampling Distributions
A statistic is a summary measure of a sample, and a parameter is a summary 
measure of a population. (I discuss both summary measures of samples and 
populations in Chapters 3, 4, and 5.) The probability distribution of a statistic 
is known as a sampling distribution, which is what this section is all about.

Some examples of statistics include

	 ✓	Sample mean ( )

	 ✓	Sample variance (s2)

	 ✓	Sample standard deviation (s)

Some examples of parameters are

	 ✓	Population mean (μ)

	 ✓	Population variance (σ2)

	 ✓	Population standard deviation (σ)

Note: Latin letters represent statistics; Greek letters represent parameters.

In many cases, a population parameter is costly and time-consuming to cal-
culate. For example, figuring out the average age of everyone living in the 
United States would be very time-consuming! In these cases, the statistician 
uses sample statistics instead. The sample mean ( ) estimates the popula-
tion mean (μ). The researcher can use a representative sample of U.S. resi-
dents to compute a sample mean, which would serve as an estimated value of 
the average age of all U.S. residents.

If you repeatedly draw samples from a population, the value of a statistic 
is most likely different for each sample. As a result, it’s useful to think of a 
statistic as a random variable whose properties can be described with a prob-
ability distribution. (See Chapter 7 for details.) 

In the following sections, I explore the characteristics of sampling distribu-
tions, including how to represent data from a sampling distribution graphi-
cally and how to compute the moments of a sampling distribution. The 
focus is on the sampling distribution of the sample mean .
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Portraying sampling distributions 
graphically
As I explain in Chapter 2, a histogram is a graphical representation of data in 
which ranges of values, known as classes, appear on the horizontal axis (the 
x-axis) and probabilities on the vertical axis (the y-axis). Each class is shown 
as a single bar whose height equals the probability of that class.

A histogram shows at a glance how the values of a variable are distributed. In 
this section, histograms are used to describe the properties of the sampling 
distribution of .

One of the benefits of using histograms to analyze a sampling distribution 
is that it is easy to see if the sampling distribution is symmetrical about the 
mean, negatively skewed, or positively skewed.

A distribution is symmetrical about the mean if values below the mean occur 
as frequently as the values an equal distance above the mean. A negatively 
skewed distribution is one in which there are a small number of extremely 
small values; a positively skewed distribution is one in which there are a small 
number of extremely large values. (Skewness and symmetry are discussed in 
Chapter 3.)

	 A distribution is symmetrical about the mean if the mean equals the median. A 
distribution is negatively skewed if the mean is less than the median and posi-
tively skewed if the mean is greater than the median.

A histogram also shows at a glance the center or mean of a distribution, and 
how “spread out” are the members of the distribution. (Recall from Chapter 4 
that the spread of a distribution is measured by its variance and its standard 
deviation.)

A histogram can be used to compare the properties of different sampling dis-
tributions or to observe the effect of different sample sizes on a sampling dis-
tribution. For example, suppose that a manufacturer of computer chips has 
found from experience that its assembly line produces two defective chips 
per hour, and that the number of defective chips produced during a given 
hour is independent of the number produced during any other hour. In other 
words, the distribution of defective chips follows the Poisson distribution 
with an average value of two per hour — in other words, λ= 2. (The Poisson 
distribution is discussed in detail in Chapter 8.)

The distribution of defective chips is shown in Figure 10-1.
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Figure 10-1: 
Histogram 
for the dis-
tribution of 

defective 
chips.

	

Suppose that a sample of five computer chips is randomly chosen, and 
the number of defective chips in each sample is recorded. This process is 
repeated 300 times. The resulting distribution consists of 300 sample means, 
ranging from a low of 0.6 to a high of 4.2.

Figure 10-2 shows the distribution of the mean number of defective chips 
among the 300 samples of size 5.

	

Figure 10-2: 
Histogram 

of a 
sampling 

distribution 
of defective 

computer 
chips with a 
sample size 

of 5.
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Note that the distribution of sample means with a sample size of 5 strongly 
resembles the Poisson distribution.

Suppose now that a sample of 30 computer chips is randomly chosen, and 
the number of defective chips in each sample is recorded. This process is 
repeated 300 times. The resulting distribution consists of 300 sample means, 
ranging from a low of 1.3 to a high of 3.

Figure 10-3 shows the distribution of the mean number of defective chips 
among the 300 samples of size 30.

	

Figure 10-3: 
Histogram 

of a 
sampling 

distribution 
of defective 

computer 
chips with a 
sample size 

of 30.
	

Note that the distribution of sample means with a sample size of 30 much 
more closely resembles the normal distribution than the Poisson distribution.

Figures 10-2 and 10-3 show that the sample mean remains centered on 2 
regardless of the sample size, but the mean number of defectives is far less 
dispersed around the mean with a sample size of 30 compared with a sample 
size of 5. (You can tell that this is the case because the sample mean ranges 
from 0.6 to 4.2 with a sample size of 5, compared with 1.3 to 3 for a sample 
size of 30.)

In addition, the figures show that as the sample size grows from 5 to 30, the 
sampling distribution looks more like the normal distribution.
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Moments of a sampling distribution
A sampling distribution is described by a series of summary measures known 
as moments, which include expected value (mean) and variance. The stan-
dard deviation is not a separate moment; it is the square root of the variance. 
The standard deviation of a sampling distribution is often referred to as the 
standard error.

For the sampling distribution of , the expected value is , which equals the 
mean of the underlying population (μ). The variance is , and the standard 
deviation, also known as the standard error, is .

The values of the variance and standard error depend on the relationship 
between the size of the sample (n) drawn from the population and the size of 
the population (N).

	 ✓	If the sample size is less than or equal to 5 percent of the population 
size, the sample is small, relative to the size of the population. In this 
case, the variance of  equals

		

		 Here, σ2 is the variance and σ is the standard deviation of the underlying 
population; n is the sample size.

		 The square root of the variance of  is the standard error of :

		

	 ✓	If the sample size is greater than 5 percent of the population size, the 
sample is large, relative to the size of the population. In this case, the 
standard error of  equals

		

The term  is known as the finite population correction factor, which 
always assumes a value of less than or equal to 1 (it equals 1 only if the 
sample size is 1). You use the finite population correction factor to reduce 
the size of the standard error to reflect the fact that less variability from one 
sample mean to the next occurs when the sample size is large relative to the 
population.
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The Central Limit Theorem
According to the Central Limit Theorem, the sampling distribution of  is 
normal if the underlying population is normal. If not, the sampling distribu-
tion of  is at least approximately normal if the sample size is at least 30. 
Under these circumstances, you can use the normal distribution to deter-
mine the probability that the sample mean will fall within a specified range of 
values. (See Chapter 9 for techniques on using the normal distribution.)

For example, suppose you choose a sample of 50 gasoline prices from gas 
stations in a major city. You can use the normal distribution to determine the 
probability that the sample mean gas price is between $3.50 and $4.00 per 
gallon.

If the Central Limit Theorem fails to hold, you can’t use the normal distribu-
tion to compute probabilities for the sample mean; instead, you need to find 
an alternative probability distribution that closely resembles the population 
that you are studying.

Converting X to a standard 
normal random variable
Based on the Central Limit Theorem, if you draw samples from a population 
of n ≥ 30, then  is a normally distributed random variable. To determine 
probabilities for , you may use the standard normal probability tables. 
(These are discussed in Chapter 9.) Use the standard normal tables, which 
require you to convert  to a standard normal random variable.

	 The standard normal distribution is the special case where the mean (μ) 
equals 0, and the standard deviation (σ) equals 1.

For any normally distributed random variable X with a mean μ and a stan-
dard deviation σ, you find the corresponding standard normal random vari-
able (Z) with the following equation:

For the sampling distribution of , the corresponding equation is
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As an example, say that there are 10,000 stocks trading each day on a 
regional stock exchange. It’s known from historical experience that the 
returns to these stocks have a mean value of 10 percent per year, and a stan-
dard deviation of 20 percent per year.

An investor chooses to buy a random selection of 100 of these stocks for his 
portfolio. What’s the probability that the mean rate of return among these 
100 stocks is greater than 8 percent?

The investor’s portfolio can be thought of as a sample of stocks chosen from 
the population of stocks trading on the regional exchange. The first step to find-
ing this probability is to compute the moments of the sampling distribution.

	 ✓	Compute the mean: .

The mean of the sampling distribution equals the population mean.

	 ✓	Determine the standard error: This calculation is a little trickier 
because the standard error depends on the size of the sample relative 
to the size of the population. In this case, the sample size (n) is 100, 
while the population size (N) is 10,000. So you first have to compute the 
sample size relative to the population size, like so:

		 n/N = 100/10,000 = 0.01 = 1%

		 Because 1 percent is less than 5 percent, you don’t use the finite popula-
tion correction factor to compute the standard error. Note that in this 
case, the value of the finite population correction factor is:

Because this value is so close to 1, using the finite population correction 
factor in this case would have little or no impact on the resulting probabilities.

And because the finite population correction factor isn’t needed in this case, 
the standard error is computed as follows:
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To determine the probability that the sample mean is greater than 8 percent, 
you must now convert the sample mean into a standard normal random vari-
able using the following equation:

To compute the probability that the sample mean is greater than 8 percent, 
you apply the previous formula as follows:

Because  and , these values are substituted into the previ-
ous expression as follows:

You can calculate this probability by using the properties of the standard 
normal distribution along with a standard normal table such as Table 10-1.

Table 10-1	 Standard Normal Table — Negative Values
Z 0.00 0.01 0.02 0.03
–1.3 0.0968 0.0951 0.0934 0.0918
–1.2 0.1151 0.1131 0.1112 0.1093
–1.1 0.1357 0.1335 0.1314 0.1292
–1.0 0.1587 0.1562 0.1539 0.1515

Table 10-1 shows the probability that a standard normal random variable 
(designated Z) is less than or equal to a specific value. For example, you can 
write the probability that Z ≤ –1.00 (one standard deviation below the mean) 
as P(Z ≤ –1.00). You find the probability from the table with these steps:

	 1.	 Locate the first digit before and after the decimal point (–1.0) in the 
first (Z) column.

	 2.	 Find the second digit after the decimal point (0.00) in the second (0.00) 
column.

	 3.	 See where the row and column intersect to find the probability:  
P(Z ≤ –1.00) = 0.1587.
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Because you’re actually looking for the probability that Z is greater than or 
equal to –1, one more step is required.

Due to the symmetry of the standard normal distribution, the probability that 
Z is greater than or equal to a negative value equals one minus the probabil-
ity that Z is less than or equal to the same negative value.

For example,

This is because Z ≥ –2.00 and Z ≤ –2.00 are complementary events. 
(Complementary events are discussed in Chapter 6.) This means that Z must 
either be greater than or equal to –2 or less than or equal to –2. Therefore, 

This is true because the occurrence of one of these events is certain, and the 
probability of a certain event is 1. (Probability and certain events are covered 
in Chapter 6.)

After algebraically rewriting this equation, you end up with the following 
result:

For the portfolio example, 

The result shows that there’s an 84.13 percent chance that the investor’s 
portfolio will have a mean return greater than 8 percent. As another example, 
suppose that it is known that there are 120 surviving paintings by a well-
known 19th century artist. These works have an average price of $1 million 
and a standard deviation of $120,000. Say that an art collector acquires a 
random selection of ten of these paintings. What’s the probability that the 
mean price of these paintings is between $975,000 and $1,025,000?

In this case, the size of the population is N = 120. The sample size is n = 10. 
Therefore, the sample size represents n/N = 10/120 = 0.08333, which is 8.333 
percent of the population. Because the sample size is greater than 5 percent, 
you use the finite population correction factor to compute the standard 
error, like so:
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You then find the mean ( ) and standard error of :

To calculate probabilities for , the first step is to convert the values of  
into standard normal random variables:

The next step is to find the values of P(Z ≤ 0.69) and P(Z ≤ –0.69), and sub-
tract one from the other. The art collector can get these values from stan-
dard normal tables, such as Table 10-2 and Table 10-3.

Table 10-2	 Standard Normal Table — Positive Values
Z 0.06 0.07 0.08 0.09
0.5 0.7123 0.7157 0.7190 0.7224
0.6 0.7454 0.7486 0.7517 0.7549
0.7 0.7764 0.7794 0.7823 0.7852
0.8 0.8051 0.8078 0.8106 0.8133

Table 10-3	 Standard Normal Table — Negative Values
Z 0.06 0.07 0.08 0.09
–0.8 0.1949 0.1922 0.1894 0.1867
–0.7 0.2236 0.2206 0.2177 0.2148
–0.6 0.2546 0.2514 0.2483 0.2451
–0.5 0.2877 0.2843 0.2810 0.2776
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Table 10-2 shows that P(Z ≤ 0.69) = 0.7549. This value is at the intersection of the 
0.6 row for Z and the 0.09 column. Table 10-3 shows that P(Z ≤ –0.69) = 0.2451. 
This value is at the intersection of the –0.6 row for Z and the 0.09 column.

Therefore, .

The result is that there’s a 50.98 percent chance that the sample mean falls 
somewhere between $975,000 and $1,025,000.


